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1 Introduction

The solution of heterogeneous agent models with incomplete markets poses important tech-

nical challenges, mainly because of the dimension of the underlying state space. Krusell and

Smith (1998) were using a very low-dimensional approximation to the aggregate law of mo-

tion, which was highly successful in their specific application, and this method has been the

workhorse in this field for 20 years. Reiter (2009) uses the opposite approach: the solution

is linearized in aggregate variables (while fully nonlinear in the solution of the individual

problem), which allows to keep track of very high-dimensional approximation of the cross-

sectional distribution. The approach of Reiter (2010a) pushes this even further: optimal

state-reduction increases the number of state variables that can be handled by linearization.

This approach has been applied in McKay and Reis (2016) and Reiter, Sveen, and Weinke

(2013), and Ahn, Kaplan, Moll, Winberry, and Wolf (2018) developed a similar technique

for continuous time models. The approach also has similarities to Kubler and Scheidegger

(2018), who reduce the state space to a very small dimension with a bounded-rationality

interpretation, while Reiter (2010a) uses a higher-dimensional approximation with the aim to

provide almost-exact aggregation. Boppart, Krusell, and Mitman (2018) notice that there is

an alternative, and in a certain sense simpler approach to compute linearized solution, noting

that the simulation of a linearized model is just a linear superposition of impulse responses

to a MIT shock.

While the use of the linearization method has grown in recent years, it is clear that certain

classes of models require solution methods that are nonlinear also in aggregate variables.

The most obvious case are models of portfolio choice. Another example are models with

stochastic volatility, such as Bloom, Floetotto, Jaimovich, Eksten, and Terry (2018), where

it is important to investigate to what extent aggregate uncertainty generates precautionary

behavior, which again needs nonlinear solution techniques. On the other hand, models where

aggregate uncertainty affects behavior in an essential way, need a solution technique that goes

beyond linearization. The method of Krusell and Smith (1998) is a hybrid between linear and

nonlinear solution. The household value function is a nonlinear function of both individual

and aggregate states, but households assume a (log-)linear law of motion for the aggregate

state. This rules out, for example, asymmetric responses to positive and negative shocks.

The nonlinear method that I develop below avoids the parameterization of the aggregate law

of motion. Aggregate transitions are computed in equilibrium, separately for each point on

an aggregate grid.

In the present paper I make two contributions. First, I complete the theory of model

reduction introduced in my working paper Reiter (2010a), by adding optimal value function

reduction. Second, I test whether this theory is useful for state-of-the art heterogeneous

agent models, which very often involve non-convexities in the agents’ optimization problem.

Non-convexities lead to discontinuous policy functions and irregular cross-sectional distribu-
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tions. These make it difficult to compute extensive margin effects in models with continuous

and discrete choice. This as two parts. First I investigate whether linearization and model

reduction give results that are similar in precision to results presented in the literature with

different methods. Second, I show how to build on the information from the linearized model

to construct different types of nonlinear solutions.

The resulting method is complicated, but most of it is automated in a toolkit that is

programmed in Julia, and which uses a special syntax for heterogeneous agent models, similar

to what Dynare does for representative agent models.

2 Example Models

2.1 Example 1: the Model of Chang and Kim (2007)

This model is very similar to a standard model of the Krusell and Smith (1998)-type, except

for introducing indivisible labor.

Ex-ante identical households face shocks to idiosyncratic labor productivity, which follows

a Markov process. Labor markets work frictionlessly, but labor is indivisible: a household can

work either zero hours or a fixed number of hours. The objective of the paper is to study the

observed ”labor wedge”, defined as the discrepancy between wage and observed MRS between

consumption and leisure:

wedge = w − UL
UC

(1)

where we use a standard utility function U(C,L). Why are there systematic fluctuations in

the wedge over the business cycle? The claim is that this is caused by the combination of

indivisible labor in combination with aggregation over heterogeneous households.

Technology is standard. There is a representative firm with production function:

Yt = F (Lt,Kt, λt) = λtL
α
t K

1−α
t (2)

where λt is Markov with transition probability distribution πλ. The household value function

is given by

V (a, x;λ, φ) = max
a′∈A,h∈{0,h̄}

{
u(c, h) + β EV (a′, x′;λ′, φ′)

}
(3)

s.t.

c = w(λ, φ)xh+ (1 + r(λ, φ))a)− a′ (4)

a′ ≥ ā (5)

φ′ = T (λ, φ) (6)

where

• x is exogenous individual productivity process
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• λ is aggregate TFP process

• φ is cross-sectional distribution of agents over (a, x).

In this model, the aggregate number of hours is determined exclusively by the extensive

margin, namely the fraction of households who decide to work in a given period. The effective

labor supply also depends on the productivity level of the working households. The labor

supply reaction is determined by two things:

• the change in the threshold level of capital where households switch from working to

non-working

• the mass of households close to this threshold.

A main computational challenge is to pin down the labor supply response. This is made

difficult by the irregular shape of the cross-sectional distribution of capital, which is caused

by the discontinuities in households’ savings function at the participation threshold.

2.2 Example 2: Business cycles with investment uncertainty

The model is a combination of Khan and Thomas (2008) and the time varying uncertainty

of Bloom, Floetotto, Jaimovich, Eksten, and Terry (2018).

[DETAILS TO BE FILLED IN.]

2.3 A general model

For notational simplicity, we assume there is only one type of heterogeneous agent (the house-

holds in the Chang/Kim model, or the firms in the uncertainty model). Generalizing this to

the case of several ex-ante heterogeneous agents is conceptually straightforward. The problem

of this agent is described as a dynamic programming problem. The rest of the model consists

of a finite set of dynamic equations, just as in a standard DSGE model.

The decision problem of the heterogeneous agent is assumed to be of the following form.

For the agent there are four types of state variables:

1. One continuous individual endogenous state variable (such as capital), denoted by k.

2. One discrete individual endogenous state variable (such as employment states, size of

owned house out of a finite choice of house sizes, etc.), denoted by e.

3. One discrete individual exogenous state variable (such as labor productivity) denoted

by z.

4. The set of aggregate states, denoted by Ω, which consists of the predetermined states

D and the current states Z. D contains the cross-sectional distribution of individual

states at the end of the last period, and potentially some other predetermined states.
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Z typically consists of the current values of the exogenous driving processes. The agent

takes the transition law of the aggregates state Ω as given.

The agent has two control variables:

1. The continuous control variable k′, which for convenience we assume is equal to the

end-of-period continuous state.

2. The discrete control variable d. We assume that this variable determines the end-

of-period discrete state, but it also influences current utility. For example, in the

Chang/Kim model there is no endogenous discrete state, but the discrete choice (work-

ing or not working) affects current utility, conditional on the end-of-period capital of

the household.

The transition law of the individual exogenous state is of course independent of the actions

of the individual agent, but can depend on the current aggregate state. We assume it is

characterized by a finite Markov chain with transition probabilities π(z, z′; Ω). At this state

we are not making any assumptions about the transition law of the aggregate state Ω.

This setup is somewhat more general than it may appear. The agent may have more

continuous control variables, which one can handle if the other continuous controls are re-

lated to the end-of-period state by static optimality conditions, for example an optimal labor

supply condition conditional on saving. A discrete state variable is often a discrete approx-

imation to a continuous state variable, where we assume it is not necessary to have a very

fine approximation. Several discrete variables can of course always combined into one discrete

variable by forming a Cartesian product. We assume for notational simplicity that the end-of-

period endogenous states are also the beginning-of-period states in the following period. One

could easily generalize this by introducing some further exogenous noise into the individual

transition laws.

Discrete choice renders the decision problem non-convex. At points in the state space

where the discrete choices changes, the continuous choice generally also jumps. In the numer-

ical solution, we will use a discrete grid also for the continuous state, but we will identify the

value of the continuous choice where the discrete choice jumps (the ”switch points”). The

change of the switch points in reaction to changes in the aggregate environment defines the

extensive-margin reaction of the agents.

At an aggregate state Ω, we define the individual policy function A(Ω) as comprising the

two decision functions k′(k, e, z; Ω) and d(k, e, z; Ω).

Apart from the dynamic optimization problem of agents, the model is characterized by a

transition equation for the cross-sectional distribution:

D′ = T (D, Z, p,A) (7)
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and equilibrium conditions for endogenous aggregate variables as a function of state and

decisions:

0 = E(p,D, Z,A) (8)

3 Linear Approximation and State Reduction

The linearized solution requires the following steps:

1. A finite-dimensional approximation of the model, cf. Section 3.1.

2. Model reduction (Sections 3.2–3.5).

3. Simulating the model (Section 3.6).

4. Accuracy check (Section 3.7).

5. Balanced reduction (Section 3.8).

3.1 Finite approximation of HA model

The finite approximation (discretization) of a HA model was explained in Reiter (2009) (cf.

also Costain and Nakov (2011)) and is now standard. Here I will mainly explain the elements

that refer to the value function approximation, because this is the part that comes in because

of the non-convexity of the agents’ decision problem.

3.1.1 Discretization of the value function

The problem of the heterogeneous agents is solved as a discrete dynamic programming prob-

lem. For this, choose a grid Gk of the continuous individual state variable with nk points,

denoted by k̄j for j = 1, . . . , nk. From this, form a grid of individual states Gx of nk · ne · nz
points by a Cartesian product between the capital grid and the sets of discrete individual

states:

Gx = Gk × {e1, . . . , ene} × {z1, . . . , znz} (9)

Denote the elements of this grid as x̄i for i = 1, . . . , nk · ne · nz. Between grid points, the

value function will be interpolated in k by a quadratic interpolation method that preserves

the contraction property of the Bellman iteration (for details, cf. Appendix A).

This grid will be used in both the linearized and the nonlinear solution.

3.1.2 Finite approximation of the cross-sectional distribution

The cross-sectional distribution of individual states will also be approximated on a finite

grid. There are two simple ways to approximate continuous distribution on a finite grid. The

first one is to model them as a combination of point masses, more concretely as the fraction
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of agents at each point of a fixed grid, which was used for example in Young (2010). The

second one is to model the distribution as a histogram, assuming a constant density within a

histogram bin, which means between two grid points (Reiter 2009). For a problem with both

continuous and discrete decisions, the histogram approach is the appropriate one, for the

following reason. The model solution determines threshold points, where the discrete choice

changes. The extensive margin effect in a model will be determined by the change in the

threshold points, as well as the density of agents at the threshold. Since the thresholds will

generally not lie on a predetermined grid, the approximation as point masses cannot capture

this effect. The histogram approach can handle this situation.

For the histogram of the cross-sectional distribution one can use the same grid as for the

value function approximation, but in may in general be useful to allow for a different choice

of grid points, to model the cross-sectional dynamics with better precision. We therefore

introduce a different grid GDk of the continuous individual state variable with nD points,

denoted by k̄Dj for j = 1, . . . , nD. From this, we form a grid of individual states GDx of

nD · ne · nz points.

3.1.3 The discretized model

The model contains three types of variables and equations.

1. The value function at each of the points in the grid Gk. This gives nk · ne · nz points in

each period.

The corresponding equation for each of these variables is the Bellman equation (10) at

this grid point.

2. The mass of agents in each histogram bin defined by the grid GDk . This gives (nk − 1) ·
ne · nz points in each period.

The corresponding equation is the transition dynamics at this point, which depends on

the individual policy function. Details are given in Appendix B.

3. Aggregate variables such as GDP, TFP etc., and their corresponding equations. This is

the same as in standard DSGE models.

All these variables at time t are collected into the vector θt. Since this vector can be huge,

some form of model reduction may be needed, which is the topic of Sections 3.2–3.5. Notice

that the optimal decisions k and e are not part of θt. Given current states and next period’s

value function, they are implicitly given by the optimality conditions.

3.1.4 Differentiating the value function

The solution of the agent problem is characterized by the Bellman equation

V (k, e, z,Ω, Z, p) = max
d,k′

Ṽ
(
k, e, z,Ω, Z, d, k′, p

)
(10)
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where the current value function conditional on current equilibrium variables p and on current

actions d, k′ is defined as

Ṽ
(
k, e, z,Ω, Z, d, k′, p

)
≡ U

(
k, e, z, d, k′; p,Ω

)
+ β

∑
z′

π(z, z′; Ω) EΩ′
{
V
(
k′, T (e, d), z′,Ω′

)}
(11)

Writing k′() and d() for the optimal decision, we can write the Bellman equation as

V (k, e, z,Ω, Z) = U
(
k, e, z, d(), k′(); p,Ω

)
+ β

∑
z′

π(z, z′; Ω) EΩ′
{
V
(
k′(), T (e, d()), z′,Ω′

)}
(12)

For the linearized solution, we have to differentiate (12) with respect to all the variables of

the model. Define by ω any of the variables with respect to which we differentiate. Then we

get from (12) that

∂V (k, e, z,Ω, Z)

∂ω
=
∂U (k, e, z, d(), k′(); p,Ω)

∂k′
∂k′()

∂ω
+
∂U (k, e, z, d(), k′(); p,Ω)

∂ω

+ β
[∂∑z′ π(z, z′; Ω)

∂ω
EΩ′

{
V
(
k′(), T (e, d()), z′,Ω′

)}
+
∑
z′

π(z, z′; Ω) EΩ′

{
∂V (k′(), T (e, d()), z′,Ω′)

∂ω
+
∂V (k′(), T (e, d()), z′,Ω′)

∂k′
∂k′

∂ω

}]
(13)

The problem is that ∂k′

∂ω is not known. However, since we assume that k′ is bound constrained,

there are two possible cases. Either the optimal k′ is interior, in which case the envelope

theorem applies and (13) simplies to

∂V (k, e, z,Ω, Z)

∂ω
=
∂U (k, e, z, d(), k′(); p,Ω)

∂ω

+ β
[∂∑z′ π(z, z′; Ω)

∂ω
EΩ′

{
V
(
k′(), T (e, d()), z′,Ω′

)}
+
∑
z′

π(z, z′; Ω) EΩ′

{
∂V (k′(), T (e, d()), z′,Ω′)

∂ω

}]
(14)

Or k′ is at a constraint, and which case ∂k′

∂ω is simply the derivative of the constraint.

For given equilibrium vector p and discrete states e, z a threshold point k∗ where the

continuous choice switches from k′− to k′+ is characterized by

max
k′−

U
(
k∗, e, z, d−, k

′
−; p,Ω

)
+ β

∑
z′

π(z, z′; Ω) EΩ′
{
V
(
k′−, T (e, d−), z′,Ω′

)}
=

max
k′+

U
(
k∗, e, z, d+, k

′
+; p,Ω

)
+ β

∑
z′

π(z, z′; Ω) EΩ′
{
V
(
k′+, T (e, d−), z′,Ω′

)}
(15)

The extensive margin effect of any shock or change in parameters depends largely on how

it affects this thresholds, and therefore it is essential that we compute the derivative of the
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threshold w.r.t. any other variables. It is given by

∂k∗

∂ω
= −

∂Ṽ (X+)
∂Ω

∂Ω|
∂ω + ∂Ṽ (X+)

∂p
∂p
∂ω + ∂Ṽ (X+)

∂k′+

∂k′+
∂ω −

∂Ṽ (X−)
∂Ω

∂Ω|
∂ω −

∂Ṽ (X−)
∂p

∂p
∂ω −

∂Ṽ (X−)
∂k′−

∂k′−
∂ω

∂Ṽ (X+)
∂k − ∂Ṽ (X−)

∂k

(16)

where X− ≡ (k, e, z,Ω, d−, k
′
−, p) and X+ ≡ (k, e, z,Ω, d+, k

′
+, p). Following the discussion of

how to differentiate the value function, we set
∂k′−
∂ω and

∂k′+
∂ω in (16) as zero in case they are

an interior solution, or equal to the derivative of the relevant bound constraint in case they

are constrained.

3.2 Model reduction: general outline

Differentiating the equations of the model outlined in Section 3.1.3 we obtain a system of

linear rational expectations equations

Λθt−1 + Γθt + Et Φθt+1 + Ψεt = 0 (17)

with a very large vector of variables θ. We want to reduce the dimension of the model without

any significant loss in accuracy. The engineering literature (Antoulas 2005) shows how to do

this if the model is already given in the VAR form θt = Aθt−1 +Bεt (or in state space form).

We cannot apply this directly because we first have to solve the model in order to know the

dynamics.

The first step is to partition the equation system (17) asΛss 0 0

Λys 0 0

0 0 0


st−1

yt−1

vt−1

+

Γss Γsy Γsv

Γys Γyy Γyv

0 Γvy Γvv


styt
vt

+

Et

0 0 Φsv

0 0 Φyv

0 0 Φvv


st+1

yt+1

vt+1

+

Ψs

Ψy

0

 εt = 0 (18)

The variable vector θ partitioned as (s, y, v) such that only v appears with time index t+ 1,

only s appears with time index t − 1, and only y, not s enters equations for v. We assume

that Γss, Γyy, and Γvv are regular. We further assume that Γss and Γvv are very sparse

(often just the identity matrix) and therefore easy to invert.

In practice, we take as s all the variables that appear with time index t − 1, and as v

all the variables that appear with time index t + 1. These two groups must not overlap. y

are all the other variables. We split the equation systems into equations so as to satisfy the

constraints implicit in (18).
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With the above assumptions, we can rewrite (18) asΓ−1
ss Λss

Λys

0

 st−1 +

 I Γ−1
ss Γsy Γ−1

ss Γsv

Γys Γyy Γyv

0 Γ−1
vv Γvy I


styt
vt

+

Et

Γ−1
ss Φsv

Φyv

Γ−1
vv Φvv

 vt+1 +

Γ−1
ss Ψs

Ψy

0

 εt = 0 (19)

Because both s and v are very large vectors, the task is to reduce the dimension of the model.

This has two components:

1. State reduction: choose an nm × ns matrix M̄ with nm < ns and define

mt = M̄st (20)

Interpretation: mt denotes the statistics (”m” is a memo of ”moments) of the cross-

sectional distribution that agents based their decision on (bounded rationality). We

assume that those statistics are linear functions of the distribution.

The matrix must be such that there exist Λ̃ys and Γ̃ys with

Λys = Λ̃ysM̄, Γys = Γ̃ysM̄ (21)

(21) is satisfied if the rows of Λys and Γys are spanned by the rows of M̄ :[
Λ′ys Γ′ys

]
∈ span(M̄ ′) (22)

2. Value reduction: choose a matrix V̄ that spans the space in which the value function is

assumed to live:

vt = V̄ ft (23)

dimen(f) << dimen(v). W.l.o.g. we can choose V̄ as orthonormal so that V̄ ′V̄ = I.

Using (20), (21) and (23), and premultiplying the first block of equations in (19) by M̄ , (19)

can be written as and the second block by V̄ ′, (19) can be written asM̄Γ−1
ss Λss

Λ̃ysM̄

0

 st−1 +

 I M̄Γ−1
ss Γsy M̄Γ−1

ss ΓsvV̄

Γ̃ys Γyy ΓyvV̄

0 V̄ ′Γ−1
vv Γvy I


mt

yt

ft

+

Et

M̄Γ−1
ss ΦsvV̄

ΦyvV̄

V̄ ′Γ−1
vv ΦvvV̄

 ft+1 +

M̄Γ−1
ss Ψs

Ψy

0

 εt = 0 (24)
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Notice the asymmetry between state reduction versus value reduction: we have assumed

we know a good approximation to the subspace in which the value function lives. I will show

in Section 3.3 how to compute such a subspace by iterating forward on the Bellman equation.

For the cross-sectional distribution, in contrast, we only assume that the statistics mt contain

the most relevant information about the distribution. There is no easy way to specify an

approximate subspace, in particular because the cross-sectional distribution can take a quite

erratic shape when individual policy functions are discontinuous, as they usually are with non-

convex decision problems. Because of this problem, the equation system (24) still contains the

full state vector s. The problem is the term M̄Γ−1
ss Λssst−1. One can approach this problem

in two ways. The simpler approach, which can be applied for any matrix M̄ , is to make some

plausible choice of this subspace. Concretely, we set st = P̄mt−1 for some matrix P̄ so that

M̄Γ−1
ss Λssst−1 in (24) is replaced by M̄Γ−1

ss ΛssP̄mt−1. The logic behind this approach is the

following. If it is true that M̄st contains the relevant information about st, the exact choice

of st should not matter much. This should at least be good enough for a first solution of the

model. One can then simulate the model to find a more appropriate PD and solve the model

again. This is explained in Section

The alternative approach, which can lead to an high-precision solution, is to find a suitable

matrix M̄ such that there exists a matrix Â with M̄Γ−1
ss Λss = ÂM̄ . In this case, M̄Γ−1

ss Λssst−1

in (24) becomes Âmt−1. This is explained in Section .

3.3 Almost Exact Value Function Reduction

The first step is to find lower-dimensional basis V̄ of the space in which the value function v

must lie. This can be done with almost zero loss of accuracy in the following way:1 Setting

Γ̃vy = −Γ−1
vv Γvy and Φ̃vvvt+1 = −Γ−1

vv Φvv, we can write the third line of equations in (19) as

vt = Et

(
Γ̃vyyt + Φ̃vvvt+1

)
(25)

Iterating gives

vt = Et

[
Γ̃vyyt + Φ̃vvΓ̃vyyt+1 + Φ̃y

vvΓ̃vyyt+y + . . .
]

= Et

∞∑
i=0

Φ̃i
vvΓ̃vyyt+i (26)

At this stage, we do not know Et yt+i, but (26) implies that vt is spanned by the columns of

the Φ̃i
vvΓ̃vy. This information is useless if the rank of the Φ̃i

vvΓ̃vy taken together equals the

dimension of v. It turns out, however, that the numerical rank of the Φ̃i
vvΓ̃vy as determined by

the finite machine precision is much smaller than the dimension of v. An essential condition

1In Reiter (2010a) I was using an iterative algorithm to determine V̄ , but the procedure described here is

much better.
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for this is that Γvy has small rank, which says again that there is only a small set of equilibrium

variables y that enter the agents’ utility functions.

For the basis V̄ of the space in which the value function v must lie, we take an orthonormal

basis of ∪ki=0Φ̃i
vvΓ̃vy for some finite k. Truncating k implies no significant loss of accuracy

because of discounting.

3.4 State aggregation: proxy distributions

We choose a matrix P̄ which selects to any vector of statistics mt one specific distribution

(called ”proxy distribution”, (Reiter 2010b)) sPDt = P̄mt which has those statistics. This

means we require

M̄P̄ = Inm (27)

The interpretation of this approach is that the state equations in (18) are satisfied not at all

possible state vectors s, but only at those that are ”typical” distributions in the sense s = P̄m

for any m. One general way to choose the proxy distribution is to use steady state information:

given any moment matrix M̄ , one can choose the corresponding proxy distributions as the

distributions that are closest to steady subject to the moment constraint:

max
s̃

1

2
s̃′Ω−1s̃ s.t. M̄ s̃ = m̃ (28)

The solution to (28) is given by s̃ = ΩM̄ ′(M̄ΩM̄ ′)−1m̃, which means

P̄ = ΩM̄ ′(M̄ΩM̄ ′)−1 (29)

For an illustrative example (which does not satisfy (21)), choose M̄ such that it selects

adjacent bins:

M̄ =


1 1 1 0 0 0 . . . 0 0 0

0 0 0 1 1 1 . . . 0 0 0

. . . . . . . . . . . .

0 0 0 0 0 0 . . . 1 1 1


With Ω = I, (29) gives

P̄ =


1/3 1/3 1/3 0 0 0 . . . 0 0 0

0 0 0 1/3 1/3 1/3 . . . 0 0 0

. . . . . . . . . . . .

0 0 0 0 0 0 . . . 1/3 1/3 1/3


The proxy distribution assumes equal ditribution within bins. Alternatively, if Ω is the

diagonal matrix with elements equal to the steady state distribution s∗, the proxy distribution
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is proportional to the steady state distribution within bins:

P̄ =


s∗1∑3
i=1 s

∗
i

s∗2∑3
i=1 s

∗
i

s∗3∑3
i=1 s

∗
i

. . . 0 0 0

0 0 0
s∗4∑6
i=4 s

∗
i

s∗5∑6
i=4 s

∗
i

s∗6∑6
i=4 s

∗
i

. . . 0 0 0

. . . . . . . . . . . .

0 0 0 0 0 0 . . .
s∗n−2∑n
i=n−2 s

∗
i

s∗n−1∑n
i=n−2 s

∗
i

s∗n∑n
i=n−2 s

∗
i


3.5 Almost-exact state aggregation

As we have discussed at the end of Section 3.2, our aim is to find a selection matrix M̄ such

that (21) is satisfied, and there exists a matrix Â with M̄Γ−1
ss Λss = ÂM̄ . To do this, we

follow what in Reiter (2010a) is called the ”Conditional Expectations Approach”. So assume

we want to predict the endogenous variables yt+i for i = 0, . . . ,∞. in a linear model where y

is related to the states s by

yt = Cst (30)

and we have the state transition equation

Et st+i = Aist (31)

where the sysem matrix A has dimension n× n, and C has dimension m× n. Obviously, we

need the following linear combinations of s:

Cst, CAst, CA2st, . . . (32)

Stack them into

Q =


C

CA

CA2

· · ·
CAn−1

 (33)

The m · n × n matrix Q is called ”observability matrix”. This approach is only useful if the

rank of Q is substantially lower than n. Define k ≤ n as the rank of Q. The SVD of Q can

be written as

Q =
[
U1 U2

] [S 0

0 0

][
V ′1
V ′2

]
= U1SV

′
1 (34)

S ≡ diag(σ1, . . . , σk) (35)

where U1 and V1 have dimension m · n× k, U ′1U1 = V ′1V1 = Ik.

From the Cayley-Hamilton theorem, there exists a Λ such that

QA = ΛQ (36)

Using (34) in (36) we get U1SV
′

1A = ΛU1SV
′

1 . Premultiplying by S−1U ′1 we get V ′1A =

S−1U ′1ΛU1SV
′

1 (notice that S is invertible). Setting M̄ = V ′1 we get
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1. M̄M̄ ′ = Ik

2. M̄ can be interchanged with A:

M̄A = ÂM̄ (37)

with Â = S−1U ′1ΛU1S being a k × k-matrix. From 1. it follows that Â = M̄AM̄ ′.

3. We have C ′ ∈ span(M̄ ′):

C =
[
I 0 . . . 0

]
Q =

([
I 0 . . . 0

]
U1S

)
M̄ (38)

We can summarize the above discussion in the following

Proposition 1. Assume that Q has rank k << n when choosing A = Γ−1
ss Λss and C such

that [
Λ′ys Γ′ys

]
∈ span(C) (39)

Then there is a k × n-matrix M̄ such that

• Λys = Λ̃ysM̄, Γys = Γ̃ysM̄

• There exists an nm × nm-matrix Â such that

M̄Γ−1
ss Λss = ÂM̄ (40)

Using (40), we can replace M̄Γ−1
ss Λssst in (24) by Âmt and obtain Â

Λ̃ys

0

mt−1 +

 I M̄Γ−1
ss Γsy M̄Γ−1

ss ΓsvV̄

Γ̃ys Γyy ΓyvV̄

0 V̄ ′Γ−1
vv Γvy I


mt

yt

ft

+

Et

M̄Γ−1
ss ΦsvV̄

ΦyvV̄

V̄ ′Γ−1
vv ΦvvV̄

 ft+1 +

M̄Γ−1
ss Ψs

Ψy

0

 εt = 0 (41)

The commutation property (40) says that, knowing the statistics mt, the exact distribution

does not matter for the solution. It does not say that the distributions live in the space

spanned by Â. In the terminology of Section 3.4, it does not necessarily give a good proxy

distribution.

3.6 Simulation and Error Analysis

The reduced model (41) can be solved and simulated for (mt, yt, ft) by standard methods.

Having a simulation (mt, yt, ft), can we recover the full state vector st and the value function
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vt? Since we have established in Section 3.3 that vt lives in the space spanned by V̄ and

parameterized by ft, we get vt directly by

vt = V̄ ft (42)

Similarly, we could obtain the distribution by st = P̄mt, but this cannot be expected to

yield a precise solution, because the proxy distribution P̄ given by (29). is a rather arbitrary

approximation. And as we have mentioned above, the property (37) does not imply that

P̄ = M̄ ′ is a good proxy distribution. It only says that (M̄ ′mt) is just as good for predicting

the future as is st.
2 To avoid the arbitrariness of the proxy distribution, we do not not use

st = P̄mt, but rather use the following, computationally more involved procedure. In any

period t of the simulation

1. obtain yt from the reduced simulation

2. obtain vt = V̄ ft from the reduced simulation

3. obtain Et vt+1 = V̄ Et ft+1 from the reduced simulation

4. obtain st by solving the first block of equations in (19).

To obtain a simulated path for the st, we obviously have to specify an initial state s0.

3.7 Measuring accuracy

We have to deal with three types of approximation error:

1. The error from discretization. This arises already in steady state. We can check for it

by varying the number of grid points etc.

2. The error from linearization. We will analyze it later, after obtaining nonlinear solutions.

Alternatively, one can check for it by computing perfect foresight solutions after shocks

of different size (Boppart, Krusell, and Mitman 2018).

3. The error from aggregation. Minimizing this error is the purpose of the aggregation

procedure of Sections 3.3–3.5. By simulating the model as described in (cf. Section 3.6),

we can compute the aggregation error by analyzing the residuals along any impulse

response function. For any given initial state st−1, if εt = εt+1 = 0 it follows from (17)

and linearity that

Λθt−1 + Γθt + Φθt+1 = 0 (43)

We compute an IR function for t = 1 : T , starting from any s0. For t = 2 : T − 1, we

compute the residual

Res(t) = Λθt−1 + Γθt + Φθt+1 (44)

2Numerically, (37) is not very precisely satisfied anyway.
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To interpret the residual, we must scale it properly. Define

RScal(i, t) ≡ Res(i, t)∑
j(|Λi,jθj,t−1|+ |Γi,jθj,t|+ |Φi,jθj,t+1|)

(45)

as the residual of equation i normalized by the sum of the absolute entries in this

equation.

With optimal state and value function reduction, the aggregation error turns out to be ex-

tremely small. For example, in the case of the Chang/Kim model, the maximum scaled error

is of the order 10−10, and the mean scaled error is of the order 10−11.

3.8 Reducing even further: Balanced Reduction

Having solved the reduced model (41), we get the solution in the form

mt = Amt−1 +Bεt

yt = Cmt (46)

This can be further analyzed and reduced by the methods developed in the engineering

literature, called ”balanced reduction” (Antoulas 2005). Define the matrices R, P, Q, Q, U ,

S, V , H̃ as follows:

RR′ = P ≡ L (A,B,Σε) (47)

QQ′ = Q ≡ L
(
A′, C ′

)
(48)

USV ′ = R′Q (49)

H̃ = S−1/2V ′Q′ (50)

where L (A,B,Σε) is defined as the matrix Σ that solves Σ = AΣA′ +BΣε. (47) syas that R

is the Cholesky factor of the covariance matrix P, and Q in (48) is the Cholesky factor of the

observability Gramian Q, while U , S and V are the SVD of the matrix R′Q with U ′U = I,

V ′V = I and S diagonal with decreasing entries. We take S as the square matrix containing

only the non-zero singular values (and drop the columns of U and rows of V corresponding

to the zero singular values), so that S is invertible by construction.

Now consider the variable transformation m̂ = H̃m, Â = H̃AH̃−1, B̂ = H̃B, Ĉ = CH̃−1.

Using that H̃−1 = RUS−1/2, straightforward algebra shows that

L
(
Â, B̂,Σε

)
= H̃L (A,B,Σε) H̃

′ = L
(
Â′, Ĉ ′

)
= (H̃ ′)−1L

(
A′, C ′

)
H̃−1 = S. (51)

Equ. (51) is a remarkable result. It shows that in the new vector m̂ the variables are ordered

such that m̂i has both the i-th highest variance, and makes the i-th highest contribution to

future values of y. For the reduced model, we pick the first k components of m̂, or the first

k rows of H̃, such that the diagonal elements Si,i are negligible for i > k:

H = H̃1:k,: (52)

16



Properties of balanced reduction

Is the (doubly) reduced model

m̂t = Âm̂t−1 + B̂εt

ŷt = Ĉm̂t (53)

an optimal approximation to the (reduced) model (53) in any sense? With the choices of

H that we have discussed, it is not a strictly optimal. Nevertheless, balanced reduction

has a strong performance guarantee (cf. Antoulas (2005, Theorem 7.10), Antoulas (1999,

Section 2.6)):

distance(ExactModel, ReducedModel) ≤ 2(σk+1 + . . .+ σn) (54)

Here, the σ’s are the singular values in (49) (called “Hankel singular values”) that were

omitted in the construction of H in (52). The distance measure in (54) is the Hankel norm,

which is defined as the maximum distance in the future response√√√√ ∞∑
i=0

||yt+i − ŷt+i||2 (55)

to any sequence of past shocks εt−i with unit length:√√√√ ∞∑
i=0

||εt−i||2 = 1 (56)

In particular, the difference in the usual impulses responses between exact and the reduced

models cannot be bigger than the bound (54). This explains why balanced reduction is the

standard aggregation method in the control literature.

There exist even better, but more complicated approximations than balanced reduction.

The theoretical lower bound on the distance between the two models is σk+1. This bound

can actually be attained (Antoulas 1999, Sections 2.6.1,3.2). For us, it seems not worthwhile

to investigate more complicated methods for the linearized model, because our main concern

is whether the reduced state from the linear model is still suitable for the nonlinear model.

4 Computing the Nonlinear Solution

4.1 Approximating the value function

The household value function is a function of the individual state (k, e, z) and the aggregate

state Ω = (D, Z). To make the computation feasible, we assume that the value function can

be well approximated as a function of the reduced information set M rather than the full

state vector Ω:

V (k, e, z,Ω, Z) ≈ V̂ (k, e, z,M,Z) (57)
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where

M = HD (58)

for some given matrix H. For ease of notation, I assume that the full Z is in the information

set, which is typically the case.

At each point (k, e, z)i in the individual grid Gx, with i = 1, . . . , nk ·ne ·nz, we approximate

this function as a linear combination of np known basis functions φj (M,Z),

V̂ ((k, e, z)i,M,Z) =

np∑
j=1

φj (M,Z) γj,i (59)

Notice that we have separate coefficients γj,i for each individual state (k, e, z)i. Obviously, we

can write the approximated value function as a function of the original state by V ((k, e, z)i,D, Z) =

V̂ ((k, e, z)i, HD, Z).

Having computed V̂ at each grid point (k, e, z)i, we can again interpolate quadratically

in the individual state k. In this way, we can compute an interpolated value function at

any state (k, e, z,D, Z. Denote the interpolated value function as V I (k, e, z,D, Z; γ). It is

parameterized by the vector of coefficients γ.

For the approximated value function, we can define expected continuation values based on

two different information sets. The expected continuation value conditional on end-of-period

information V EC is given by

V EC(k′, e′, z,Ω, Z;M ′) =
∑
z′

π(z, z′; Ω) EZ′ V
I
(
k′, e′, z′,M ′Z ′; γ

)
(60)

If we make a finite approximation of the law of motion of aggregate Z, we can write it as

V EC(k′, e′, z,Ω, Z;M ′) =
∑
z′

π(z, z′; Ω)
∑
Z′

πZ(Z,Z ′)V I
(
k′, e′, z′,M ′Z ′; γ

)
(61)

Notice that the continuation value depends on end-of-period moments M ′, which are deter-

mined in equilibrium. Since D′ is predetermined (does not depend on next period’s shocks),

we only need to know the finite number of statistics M ′ = HD′ in order to compute the

expected continuation value.

Conditional on M ′, which is exogenous to the individual agent, the optimization problem

can be compactly written as

max
d,k′

U
(
k, e, z, d, k′; p,Ω

)
+ βV EC(k′, T (e, d), z′,Ω, Z;M ′) (62)

4.2 Temporary Equilibrium

Given any continuation value function V EC(k′, e′, z,Ω, Z;M ′), a temporary equilibrium (p,m′,A)

at any aggregate state D, Z is defined as consisting of

• a set of equilibrium values p
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• a set of end-of-period statistics m′

• a policy function A

such that

• policy functions are optimal, which means that they satisfy (62).

• prices satisfy the equilibrium conditions

E(p,D, Z,A) = 0 (63)

• end-of-period statistics satisfy the transition law

m′ = HDT (D, Z, p,A) (64)

This concept of temporary equilibrium requires to solve for the set of statistics M ′, which

might be impractical if this set is large. We therefore also define a partial temporary equilib-

rium, where we replace the consistency condition (64) by m′ = T0(D′, Z) with an arbitrarily

given transition law T0(D′, Z). Below, we will use the transition law obtained from the lin-

earized solution. In this case, the fixed point problem is reduced to finding the equilibrium

variables p.

4.3 Backward iteration algorithm

I now describe an algorithm to solve for a global nonlinear approximation of the solution.

The task is to find the parameters γj,i that define the value function at each grid point as a

function of the reduced aggregate state. This requires that we have chosen a set of states M

and a set of basis functions φj (M,Z), as described above. The backward iteration is carried

out on a finite set of aggregate grid points Ωl for l = 1 . . . , nA. For the results reported in

Section 5), I have used a grid obtained from an earlier simulation of the model, similar to the

approach in (Judd, Maliar, and Maliar 2012).

In the following, I describe here a ”conceptual” version of the algorithm, which solves for

temporary equilibrium in each step and at each grid point. This is very time consuming, but

should be the best guarantee for convergence. A practical algorithm makes choices about

what to update in which step, so as to increase speed while still achieving convergence, but

this is an implementation detail.

1. Denote the maximum iteration count by T . Initialize the value function VT+1

(
x̄i; Ω̄j

)
for i = 1, . . . , nk · ne · nz and j = 1, . . . , nA by the value function obtained in an earlier

solution (for example the linearized solution).

2. For t = T : −1 : 1 do
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(a) Compute the coefficients of the polynomial approximation separately for each

k, e, zj ∈ Gx by the linear projection γi,t+1 = B\~Vi,t+1 where

B =


φ1(M̄1) · · · φnp(M̄1)

...
...

...

φ1(M̄nM ) · · · φnp(M̄nM )

 , ~Vi,t+1 =


Vt+1(x̄i; Ω̄1)

...

Vt+1(x̄i; Ω̄nA)

 (65)

(b) For each aggregate grid point Mj , j = 1, . . . , nA do

i. Guess (p,m′)

ii. Define an expected continuation value at grid points as

Ṽ (ki, ei, zi) =
∑
z′

π(zi, z
′; Ω)

∑
Z′

πZ(Z,Z ′)

np∑
j=1

φi
(
m′
)
γj,t+1

(
ki, ei, z

′)
)

(66)

iii. Compute policy A that solves (62) with continuation value function

[d(xi), k
′(xi)] = argmax

d,k′

{
U
(
xi, d, k

′; p,Mj

)
+ βṼI

(
k′;T (ei, d), zi

)}
(67)

where xi stands for ki, ei, zi.

iv. Check whether (p,m′,A) satisfy the conditions for a temporary equilibrium

(62), (63) and (64). If not, update (p,m′) until convergence is achieved.

Finding the equilibrium (p,m′) describes an ne+nM -dimensional fixed point prob-

lem which can be solved, for example, by quasi-Newton methods such as Broyden’s

algorithm.

(c) Update the value function for all i = 1, . . . , nknenz by

Vt(xi,Mj) = U
(
xi, d(xi), k

′(xi), p
∗)+ βṼI

(
k′(xi); (., T (ei, d), zi)

)
(68)

After convergence, the value function should approximately satisfy the recursive relationship

Vt(xi,Mj) = U
(
xi, d(xi,Mj), k

′(xi,Mj)), p(Mj)
)

+ βṼI
(
k′(xi,Mj);

(
., T (ei, d(xi,Mj)), zi;m

′(Mj)
))

(69)

4.4 A sequence of solution methods

The methods described above can be used to obtain a variety of different solutions. I classify

them into five groups. Computing such a sequence of solutions helps to understand the

different aspects of nonlinearity in the model.

1. Lin : Linearized solution
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2. NonL1 : Partial temporary equilibrium (cf. Section 4.2) with expected continuation

value obtained from linearized solution. This shows the effect of the distribution on

switch points, and captures nonlinear extensive margin effect.

At any point in the simulation, the partial temporary equilibrium reflects the current

cross-sectional distribution. Asymmetries in the impulse responses due to changes in

the distribution are therefore reflected in this solution. However, the agents do not yet

take into account the effect of these nonlinearities on next period’s state and on their

continuation value.

3. NonL2 : Temporary equilibrium (cf. Section 4.2) with expected continuation value

obtained from linearized solution. This is like NonL1 , but now the agents compute

their continuation value at the equilibrium distribution at the end of the period. This

captures another aspect of nonlinearity.

4. NonL3 : Temporary equilibrium with global linear value function. The value function

at each point of the individual grid is still linear in the aggregate states, but this linear

function is obtained by a regression over an aggregate grid covering the relevant parts

of the state space. This does not yet incorporate precautionary effects w.r.t. aggregate

variables.

5. NonL4 : Temporary equilibrium with a nonlinear value function

Computing all these solutions involves the following steps.

1. Solve the model by linearization.

2. Compute the continuation value function (61) from the linearized model.

Solve the model as a sequence of temporary equilibria (method NonL1 ) and check

for deviations from linearity.

3. Simulate a long time series of the model with method NonL1 or NonL2 and choose

a set of aggregate grid points from this simulation (Judd, Maliar, and Maliar 2012).

4. Approximate the value function as a polynomial in a very small set of aggregate vari-

ables, such as aggregate capital and the exogenous shock processes (with a first order

polynomial, this is method NonL3 ; with a higher order polynomial, it is method

NonL4 ). Notice that we are using here basically the same value function approx-

imation as in a Krusell/Smith solution. The difference is that we are not assuming

a function form for the aggregate law of motion, but rather solve for the aggregate

transition as an equilibrium outcome separately at each aggregate state.

5. Simulate a new time series of the model with method NonL3 or 4. Compute the value

function and the Bellman equation residuals ( V̂ − V in the notation of Section 4.5)
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along the simulation path. Project the residuals along the simulation path on a set of

potential state variables such as higher moments, states from balanced reduction etc. to

see which states are helpful to predict the value function.

6. Approximate the value function as a polynomial in a larger set of aggregate states and

repeat Step 4.

4.5 Measuring accuracy of a nonlinear solution

One can measure accuracy by looking at the Bellman equation residual along a simulation

path. At any aggregate state that we visit in the simulation, we first solve for the temporary

equilibrium, and then compute the value function at this state by Equ. (68), as we do in the

update step of the backward iteration algorithm. Denote this value function by Vt. Then we

compute the approximated value function V̂t given by (59). The difference Ṽt = V̂t−Vt is the

Bellman equation error, similar to the Euler residual in in models where the policy function is

approximated. We need to scale this error so that it can be interpreted. What matters is not

really the level but the slope of the value function. Denote by Vt[i] the value at point i of

the value function grid (for ease of notation, I suppress the arguments of the grid of discrete

variables). We scale the error as

errt[i] =

∣∣∣∣∣(V̂t[i+ 1]− Vt[i+ 1])− (V̂t[i]− Vt[i])
Vt[i+ 1]− Vt[i]

∣∣∣∣∣ (70)

With log utility, this has the interpretation of a relative Euler approximation error in con-

sumption. We measure the average and the maximum error over the whole simulation.

4.6 Comparison with Krusell/Smith method

In both methods, the value function is approximated as a function of a reduced set of aggre-

gate state variables. There are two fundamental differences. A first one is that Krusell/Smith

choose these reduced states as smooth functions of the underlying large state spaces, such

as the first or higher moments of the cross-sectional distribution. I supplement these vari-

ables by a set of statistics that are the result of balanced reduction of the linearized model.

The second fundamental difference is that Krusell/Smith impose a smooth functional form

on the aggregate law of motion in these variable when they compute the value function of

the economic agent. This method therefore parameterizes both the value function and the

aggregate law of motion. In contrast, I solve for the temporary equilibrium at each point

of the aggregate grid, which involves to find next period’s realization of the cross-sectional

distribution (at least of the reduced state that characterizes this distribution). No a priori

assumption is made about the aggregate transition law. The only parameterization is the

value function. The exact solution will then depend on the grid of aggregate states on which

the solution is computed. This grid is obtained from a simulation of an linearized solution
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of the model. This is one of the ways in which linearization helps to prepare the nonlinear

solution. By not imposing smoothness on the aggregate transition, the method becomes more

general, but at the same time it becomes more vulnerable to instability.

5 Numerical Results

5.1 The model of Chang and Kim

I have solved this model using the same parameter values as in the original paper. For the

numerical approximation, I have approximated the stochastic process of individual produc-

tivity by a 17-state Markov chain. I have chosen a grid of 1000 histogram bins for the capital

distribution, and a grid of 400 points for the value function, for each level of productivity.

With these choices, the linearized model has somewhat more than 23800 variables. Optimal

state reduction reduces the number of states from around 17000 to 389. The value func-

tion parameters were reduced from 6800 to 253. As mentioned in Section 3.7, the maximum

aggregation error is of the order 10−10.

Although the model is easy to write down, the numerical solution still poses substantial

problems. Takahashi (2014) argues that the numerical solution presented in the original

paper Chang and Kim (2007) is numerically imprecise, and presents a corrected version of

the solution. Table 1 presents key results of the model. The first columns shows the original

solution of Chang and Kim, the second column shows the corrected solution of Takahashi,

the third column shows my solution obtained from the linearized model. The remaining

columns show results from several nonlinear approximations, of the different types outlined

in Section 4.4.

Chang/Kim Takahashi Lin NonL1 NonL3 NonL4 NonL4

σH 0.76 0.57 0.56 0.56 0.44 0.44 0.44

σwedge 0.76 0.24 0.23 0.22 0.15 0.14 0.15

σY 1.28 1.30 1.20 1.23 1.14 1.14 1.14

σC 0.39 0.33 0.33 0.33 0.42 0.42 0.42

σI 3.06 3.08 3.12 3.13 2.75 2.75 2.76

σL 0.50 0.41 0.41 0.42 0.34 0.33 0.34

σY/H 0.50 0.49 0.49 0.48 0.57 0.58 0.57

ρ(H,wedge) 0.87 0.95 0.95 0.97 0.96 0.96 0.96

Table 1: Results CK model

It turns out that the second moments obtained from the linearized solution are very close

to the results in Takahashi (2014). On the one hand, this is not surprising, because the

linearized solution does not suffer from the numerical problems pointed out by Takahashi.

On the other hand, it is remarkable that two solution methods that are based on very different
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simplifying assumptions in the end come to almost identical conclusions. I will argue below

that this is due to one commonality between the methods: in both cases, agents solve their

optimization problem under the assumption of a linear aggregate law of motion (log-linear

versus linear plays very little role in this model).

Figure 1 illustrates why linearity in aggregate variables is a dubious assumption in this

model. The upper panel illustrates the labor supply response to a one percent increase in

TFP. The blue line shows the increase in the threshold point following the technology shock.

The green line shows the density of households at the threshold point, and the red line shows

the response of hours, which is the product of the two earlier lines. It was divided by the

total number of hours in steady state, so the sum over all the points of the red line is the

aggregate elasticity of hours to TFP. One can see that the bulk of the labor supply response

comes with household at the intermediate productivity levels (level 7-11 out of 17 possible

levels). The lower panel shows some snippets of the cross-sectional distribution of assets in

the steady state, for these five levels of individual labor productivity. The x-axis indicates

the histogram bin in the capital distribution, relative to the bin in which the labor market

participation threshold lies. The y-axis draws the fraction of households in this bin. This

means, for each level of productivity, the value at x=0 gives the number of households in the

capital bin in which the participation threshold lies. As is clear from the upper part of the

graph, the density in these bins is crucial for determining aggregate labor supply. Since a

linearized solution always gives a scaled up version of the response to very small shocks, only

the number of agents in the bin of the threshold matters, not the agents in neighboring bins.

This is different in a nonlinear solution, where the threshold does not stay within the same

bin of the capital grid. We see that for all productivity levels the mass of agents to the left

of the threshold is much larger than to the right of the threshold. This is because households

that switch from working to non-working also reduce their saving level. At least in a partial

equilibrium settings, this would mean that a lowering of the threshold changes the behavior

of many more households than an increase in the threshold, which implies asymmetry in the

response to aggregate shocks. In general equilibrium, endogenous price reactions will probably

dampen but not eliminate the asymmetry,

To see how this asymmetry affects the solution, Figure 2 draws impulse responses obtained

from the first type of nonlinear solution, NonL1 . For each variable, three lines are drawn.

The green line gives the response to a positive shock of two standard deviations. The red

line gives the response to a negative shock of two standard deviations, multiplied by -1. If

the response was symmetric, the two lines would exactly coincide. The blue line gives the

linear impulse response as a benchmark. The shows the asymmetric response that one would

expect from Figure 1. In response to a positive shock, labor supply increases by less and

wages increase by more than in the linear benchmark, because the participation threshold

moves up, and the cross-sectional density function is sharply decreasing to the right of the

threshold. In response to a negative shock, labor reacts more and wages react less than in
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the linear case. The deviations from symmetry appear quantitatively small. This is mainly

because labor supply reacts very strongly to the current wage, for a given continuation value.

Since there are no labor market frictions, and most households hold enough assets to be well

insured against TFP fluctuations, they react very elastically to transitory changes in the real

wage. The fourth column in Table 1 presents the results obtained by simulating the temporary

equilibrium in this way. The slight asymmetries detected in Figure 2 have almost no effect

on second moments.

Figure 3 draws the same impulse responses, this time calculated with a solution of type

NonL3 . For this graph, households are approximating their value function as a cubic function

of aggregate capital and TFP only. Results are almost identical if we use a linear function

of aggregate capital and TFP, or as a function of capital, TFP and several other moments,

obtained from balanced reduction. What matters is not the states that households use for

approximation, but the type of approximation: we solve for temporary equilibrium with a

global approximation of the value function. The result is surprising: for both positive and

negative shocks, labor supply reacts less and the real wage reacts more than in the linearized

solution. This is mainly driven by the fact that in a stochastic simulation, the distribution

around the threshold points is on average different from what it is in the steady state. A

further interesting aspect of Figure 3 versus Figure 2 is that the global approximation reduces

the asymmetry that was observed with the linearized continuation value function. Temporary

equilibrium with market clearing wage leads to less asymmetry than one would expect from

Figure 1. Equilibrium with globally approximated value functions reduces it even further.

These results are reflected in columns 4–7 of Table 1. If a global approximation is used, the

variance of hours, effective labor and of the labor wedge all go further down. It makes almost

no difference whether the approximation is globally linear (column 5), globally nonlinear with

only one moment of the distribution (column 6), or globally nonlinear with 5 moments of the

distribution (column 7).

To check the accuracy of the solution, Figure 4 plots the Bellman equation errors at

some randomly chosen steps in the simulation process. In each case, the errors for three

levels of individual productivity are chosen: the 5th, 9th and 13th out of 17 productivity

levels. We see the same pattern at both points: errors are extremely small for most part

of the asset grid, but for each productivity level there is a spike in a narrow range, which

are around the threshold level of assets where households of this productivity switch to non-

working. The errors were computed in the solution that approximates the value function as

a function of aggregate capital and current TFP only. In this simple model, this already

gives a reasonably precise solution, and it turns out to be very difficult to improve on it. The

main problem is that aggregate labor supply effectively depends on a few household types

that are located around the thresholds form the intermediate productivity levels. This makes

aggregate responses rather irregular, in a way that cannot be capture by smooth functions of

the aggregate states. To increase accuracy of the solution, it is probably necessary to increase
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the number of individual productivity states.

5.2 The model of investment under uncertainty

[TO BE FILLED IN.]

6 Conclusions

Linearization can be successfully applied in heterogeneous agent models with non-convex

optimization problems. For a number of baseline models, the linearized solution is very close

to the solution obtained in the original papers (for example Takahashi (2014) and Khan and

Thomas (2008)) by different methods.

I have developed a method of state and value function reduction that allows to solve

rather large heterogeneous agent models by linearization. This reduction process is fully

automatized, and independent of the specific structure of the model such as the number of

individual states. A key condition for the applicability of reduction is that the cross sectional

distribution affects the utility or budget constraint of agents only through a small set of

equilibrium quantities such as prices.

Linearization with state reduction is the basis for a variety of nonlinear solution methods.

Simulating the model as a sequence of temporary equilibria where the expected continuation

value function comes from the linearized solution can uncover asymmetries in the impulse

responses that are typical for models with non-convex optimization problems. We can also

compute solutions where the agents take these asymmetries into account in their continuation

value function. This is achieved by backward iteration on an aggregate grid that was obtained

from simulation. This solution can significantly deviate from the linearized solution.
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Figure 3: Impulse response to technology shock NonL4
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A Interpolating the value function

[TO BE FILLED IN.]

B Finite representation of the distribution

Denote by πk(i, j) the transition probability from histogram bin i to histogram bin j during

period t, conditional on individual productivity being xk at the beginning of t. We now have

to approximate the transition probabilities. I assume that the discrete decision is the same

at the lower and the upper end of the bin. If there is a threshold point within the bin, I treat

this case simply as two separate bins. Denote by a0 = a(āDi , xk;µ, λ) the continuous

decision taken at the lower end of the bin, a1 = a(āDi+1, xk;µ, λ) the continuous decision taken

at the upper end. We make the assumption that the histogram bins are so small that the

continuous decision over this range is well approximated by a linear function.

For simplicity of exposition we assume that a0 ≤ a1; the change of formulas for the

opposite case is straightforward. Denote by ι0 and ι1 the indices of the histogram bin in

which a0 and a1 lie, respectively. We look for a transition law that preserves the expected

value of a′, assuming that a(.) is linear on the bin, and that the density is constant on bins.

Defining âj ≡
āDj +āDj+1

2 , this can be written as

â ≡ a0 + a1

2
=

nx∑
j=1

πk(i, j)âj (71)

We have to distinguish the following three cases.

1. ι1 = ι0. The image of bin i under the mapping a(., xk;µ, λ) is contained in the bin ι1.

To preserve expected value, we have to allow for a positive probability of going to an

adjacent bin. We choose

πk(i, ι0) =


â−âι0+1

âι0−âι0+1
, , if â ≥ âι0

â−âι0−1

âι0−âι0−1
, otherwise

(72)

with πk(i, ι0 + 1) = 1−πk(i, ι0) in the first of these case, and πk(i, ι0− 1) = 1−πk(i, ι0)

in the second one.

2. ι1 = ι0 +1. The image of bin i is contained in two adjacent bins. We preseerve expected

values by choosing πk(i, ι0) =
â−âι1
âι0−âι1

and πk(i, ι0 + 1) = 1− πk(i, ι0).

3. ι1 = ι0 + 2.k Now we split the probability mass between three intervals. This gives

us the flexibility to match both the first and the second moments of the conditional

distribution. We first try to do this by solving this as a linear problem. This can fail

in the sense that the probability for one of the intervals is negative. This will never
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be the middle interval, it must be either ι0 or ι1. We set this probability to 0 and use

the remaining two intervals so as to match the conditional mean. This is the choice

that minimizes the cross-sectional variance, and comes as close as possible to the target

variance.

4. ι1 > ι0 + 2. If the mean â lies within one of the middle intervals, it is certainly possible

to match both mean and variance, because one can then match the mean using oinly

middle intervals, and this will certainly have a variance that is lower than V ar(a). One

can then use the outer intervals to achieve a mean preserving spread, until the variance is

matched. Since we have more than two free parameters, there is in general a continuum

of choices that matches both moments. It would be natural to assign the interior bins

probabilities that are proportional to their respective widths; in other words, to treat

the interior bins just like one big bin. Since this will not always be possible, I proceed

in the following iterative manner:

(a) I treat the bins ι0 + 1, . . . , ι1− 1 as one bin, and assign the probabilities as explain

above in the case ι0 + 2 = ι1.

(b) If one of the outer bins has negative probility, I drop this bin from the list. Then I

treat again the inner ones of the remaining bins as one bin and go back to step 4.

(c) If we are left with only three bins, we proceed with step 3.

This procedure will always lead to a solution that matches both moments as long as â

lies within the interior bins. If this is not the case, it is not in general possible to match

both moments.

These rules define the transition matrix Πk, Denote by πk(i) the mass of households with

productivity xk in histogram bin i, and by πk the vector containing the πk(i)’s. The total

distribution is then chacterized by stacking all the π[k] into the big vector π. The transition

matrix for the asset distribution from the beginning to the end of the period is then given by

the block-diagonal matrix

Π =



Π1 0 . . . 0 0

0 Π2 . . . 0 0
...

...
...

...
...

0 0 . . . Πnx−1 0

0 0 . . . 0 Πnx


(73)

32



References

Ahn, S., G. Kaplan, B. Moll, T. Winberry, and C. Wolf (2018). When Inequality Matters

for Macro and Macro Matters for Inequality. NBER Macroeconomics Annual 32 (1),

1–75.

Antoulas, A. C. (1999). Approximation of linear dynamical systems. In J. Webster (Ed.),

Wiley Encyclopedia of Electrical and Electronics Engineering, volume 11. Wiley.

Antoulas, A. C. (2005). Approximation of Large-Scale Dynamical Systems. SIAM.

Bloom, N., M. Floetotto, N. Jaimovich, I. S. Eksten, and S. J. Terry (2018, May). Really

Uncertain Business Cycles. Econometrica 86 (3), 1031–1065.

Boppart, T., P. Krusell, and K. Mitman (2018). Exploiting MIT shocks in heterogeneous-

agent economies: the impulse response as a numerical derivative. Journal of Economic

Dynamics and Control 89 (C), 68–92.

Chang, Y. and S.-B. Kim (2007). Heterogeneity and aggregation: Implications for labor-

market fluctuations. American Economic Review 97 (5), 1939–1956.

Costain, J. and A. Nakov (2011). Distributional dynamics under smoothly state-dependent

pricing. Journal of Monetary Economics 58 (6), 646–665.

Judd, K. L., L. Maliar, and S. Maliar (2012). Merging simulation and projection approaches

to solve high-dimensional problems. NBER Working Papers 18501, National Bureau of

Economic Research, Inc.

Khan, A. and J. K. Thomas (2008). Idiosyncratic shocks and the role of noncenvixities in

plant and aggregate investment dynamics. Econometrica 76(2), 395-436 .

Krusell, P. and A. A. Smith (1998). Income and wealth heterogeneity in the macroeconomy.

Journal of Political Economy 106 (5), 867–96.

Kubler, F. and S. Scheidegger (2018). Self-justified equilibria: Existence and computation.

Manuscript, University of Zurich.

McKay, A. and R. Reis (2016, January). The Role of Automatic Stabilizers in the U.S.

Business Cycle. Econometrica 84, 141–194.

Reiter, M. (2009). Solving heterogenous agent models by projection and perturbation.

Journal of Economic Dynamics and Control 33 (3), 649–665.

Reiter, M. (2010a). Approximate and almost-exact aggregation in dynamic stochastic

heterogeneous-agent models. IHS Working Paper 258.

Reiter, M. (2010b). Solving the incomplete markets model with aggregate uncertainty by

backward induction. Journal of Economic Dynamics and Control 34 (1), 28–35.

Reiter, M., T. Sveen, and L. Weinke (2013). Lumpy investment and the monetary trans-

mission mechanism. Journal of Monetary Economics 60 (7), 821–834.

33



Takahashi, S. (2014, April). Heterogeneity and Aggregation: Implications for Labor-Market

Fluctuations: Comment. American Economic Review 104 (4), 1446–60.

Young, E. R. (2010). Solving the incomplete markets model with aggregate uncertainty

using the krusell-smith algorithm and non-stochastic simulations. Journal of Economic

Dynamics and Control 34 (1), 36–41.

34


