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1 Introduction

The economic literature has recently begun to explore the role of safe assets
in the economy and the resulting implications for monetary policy and financial
stability. Safe assets, and in particular their scarcity, may be an essential factor
to understand the secular decline of real interest rates or why global macroeco-
nomic imbalances build up.! However, what makes an asset safe? What does
exactly mean for safe assets to be scarce?

In most of this literature, securities are safe when they have a non-stochastic
payoff. However, many assets that we usually consider safe do not fall under
this definition. For example, government bonds can be considered default-free
in nominal terms but are still subject to inflation risk. For this reason, we adopt
a different approach: safety should be an equilibrium outcome.

In this paper we explicitly consider the role of information in the determina-
tion of the degree of safeness of the assets. Following Gorton (2017), an asset
is safe as long as there is no incentive to produce private information about its
quality.? Indeed, information can generate volatility in the value of an asset,
making it not suitable for facilitating transactions. This implies that opacity
may be preferred to transparency.?

Regarding scarcity, instead, the shortage of safe assets matters if they have
a special role compared to other assets. Intuitively, we mean that some transac-
tions cannot be realized if agents do not have a sufficient amount of safe assets.
Only if their supply is sufficiently large the economy can reach the first-best
equilibrium, regardless of the availability of other assets. Otherwise, it is stuck

in a safety trap, as in Caballero and Farhi (2018).%

! Caballero, Farhi and Gourinchas (2017) discuss these issues and provide empirical evidence
of a shortage of safe assets. Gorton (2017) reviews the empirical literature and the implications
for financial stability.

2For alternative definitions or microfoundations of the assets safety see Caballero, Farhi and
Gourinchas (2017) and He, Krishnamurthy and Milbradt (2018).

3See for example: Hirshleifer (1971); Andolfatto (2010); Gorton and Ordofiez (2013, 2014);
Andolfatto, Berentsen and Waller (2014); Dang et al. (2017).

4A different notion of safety trap has been introduced by Benhima and Massenot (2013),
that refers to situations in which risk aversion and habit consumption can lead to an inefficient
over-accumulation of assets with the non-stochastic payoff. In this paper we always refer to the
definition of Caballero and Farhi (2018).



Our first contribution is to show that a safety trap can arise naturally in a
general framework which microfounds when and why an asset is safe and why
people demand safe assets. When safety is an equilibrium outcome there is no
need to resort to nominal rigidities or extreme risk-aversion as in Caballero and
Farhi (2018). More generally, we show that being explicit about the determi-
nants of assets safety is fundamental to understand the impact and the policy
implications of safe assets scarcity.

We consider a general equilibrium environment & la Lagos and Wright (2005),
in which limited commitment and the absence of a record-keeping technology
make unsecured credit unfeasible. Assets are essential because they allow the re-
alization of profitable bilateral exchanges that, otherwise, would not be feasible.
As in Gorton and Ordonez (2013, 2014), the critical friction is that assets can
be information-sensitive. It means that agents choose to produce costly private
information about the assets payoffs before the latter become public knowledge.
Information acquisition introduces uncertainty about the outcome of the trans-
actions, which will depend on the information that has been produced. Assets
are safe, instead, when they are information-insensitive, in the sense that there
is no endogenous production of information.

Information-insensitive assets can have different abilities in facilitating trans-
actions. Suppose there is a divisible asset with a stochastic payoff, called A. The
option to produce costly private information can generate a haircut on the as-
set’s value or an endogenous upper bound for the amount of assets that can be
transacted.® Agents could be constrained in the use of the asset and, differently
from Gorton and Ordonez (2013, 2014), the first best could not be attained,
regardless of how abundant the asset is and although in equilibrium the asset is
information-insensitive. Assets are definitively safer when agents can use them
in the desired amount and trade them at face value without the threat of infor-
mation acquisition. It is the scarcity of these safer assets — called B — that keeps

the output of the economy below its optimal level. Only increasing their supply

SIntuitively, the private value of information is increasing in the amount of asset transacted,
while the cost of information acquisition is fixed. Both the haircut and the endogenous upper
bound allow to keep the profit from information acquisition lower than its cost.



can improve welfare, regardless of the supply of the other assets.

This result is equivalent to the safety trap described in Caballero and Farhi
(2018), although both the rational and the policy implications are different. For
example, suppose both assets A and B coexist. For a small initial provision of the
asset B, a costless marginal increase in its supply can affect only asset prices, and
surprisingly there could be no benefits concerning welfare. Agents do not change
their level of consumption but only the mix of assets used in their transactions.
They use more of the asset B and less of the asset A. Only when the initial supply
of the asset B is sufficiently large, a marginal increase in its provision is welfare
improving and leads to an expansion of trade and production in the economy.
Therefore, differently from the previous literature the benefits of increasing the
supply of the safest assets depend on their initial amount and the magnitude of
the expansion, even under the extreme assumption that changing their supply
is costless. We conclude that microfounding assets safety is fundamental to

understand the policy implications of safe assets scarcity.

Related literature. The effects of a shortage of safe assets have been exten-
sively analyzed by Caballero in a series of contributions since 2006 (for a review
see Caballero, Farhi and Gourinchas, 2017). Caballero and Farhi (2018) intro-
duced the notion of safety trap in a Keynesian model in which the demand for
safe assets determines the natural interest rate.% Differently from them, our re-
sults do not depend on risk aversion but information frictions. Moreover, here
prices are flexible, while their results rely on nominal rigidities.

This paper endogenizes assets liquidity by allowing for the possibility to
produce private information about the quality of the assets, as in Dang, Gorton
and Holmstrom (2015a,b). While their focus is the determination of the optimal
security that agents use to trade, here we are interested in the implications of the
coexistence of different assets as a medium of exchange. The most related works

are Gorton and Ordonez (2013, 2014). Gorton and Ordoniez (2013) look to the

5The scarcity of safe assets pushes the natural (safe) interest rate down. When the economy
hits the zero lower bound the real rate cannot clear the market for safe assets. Since nominal
prices cannot adjust, this excess demand can only be absorbed if output goes down.



coexistence of assets with a stochastic and non-stochastic payoff, respectively,
showing that the latter is redundant when the first is information-insensitive. In
our case, instead, the threat of information acquisition can make the asset with
a non-stochastic payoff essential also when the other securities are information-
insensitive and abundant. Differently from Gorton and Ordonez (2013), we make
different assumptions about preferences and assets are divisible.

Andolfatto, Berentsen and Waller (2014) consider a framework similar to this
paper, but they are concerned about the desirability for the social planner to
disclose information about the quality of the assets. Also Andolfatto (2010) and
Andolfatto and Martin (2013) show that information may make an asset not
suitable as a mean of payment. In their case the disadvantage is that the asset
can have a low valuation in a situation in which there is a need for liquidity,
while here informational frictions affect the ability of the assets to be used as
medium of exchange.

Like the two previous contributions, this paper is related to the New Mon-
etarist literature (Lagos, Rocheteau and Wright, 2017; Nosal and Rocheteau,
2011). We endogenize assets liquidity in the Lagos and Wright (2005) frame-
work, but we abstract from fiat money and other nominal assets.” Also in Lester,
Postlewaite and Wright (2011, 2012) agents can invest in a costly technology to
recognize the quality of assets. Differently from here, in their case this choice
must be made before meeting a counterpart and receiving an offer. Li, Rocheteau
and Weill (2012) extend their model to the case in which agents can produce
at a positive cost counterfeited assets, and this generates an endogenous upper
bound on the amount of assets that can be transferred in bilateral matches, sim-
ilarly to our model. Rocheteau (2011) studies a signaling game in which some
agents have superior information about the quality of an asset and make a take-
it-or-leave-it offer to their counterparts. Asymmetric information makes assets
partially illiquid, preventing to attain the first-best allocation. Here, a similar

result arises from just the threat of asymmetric information.

"The role of real assets in facilitating transactions has been already studied by Geromichalos,
Licari and Suarez-Lledo (2007) and Lagos (2010, 2011), although in their models the liquidity
properties of the assets are taken as given.



In section 2 we present the structure of the model and we show when agents
produce information. In section 3 we discuss the equilibria of the model and
the implications of safe assets scarcity. Finally, in section 4 we draw the main

conclusions, and we illustrate the direction for future research.

2 The model

Time is discrete, starts at t = 0 and continues forever. Similarly to Lagos and
Wright (2005), each period is divided in two sub-periods. In the first sub-period
trades occur in a decentralized market (DM), while in the last sub-period trades
take place in a Walrasian centralized market (CM). There are two perishable
consumption goods, one in each sub-period. There is a continuum of infinitely-
lived agents divided into two types, both with measure 1. We call them buyers
and sellers, and they differ regarding when they produce and consume.

In each period the utility of a buyer is u(q;) — ht, where ¢ is the consumption
of the DM good and h is the disutility of work during the second sub-period.
The utility function wu(-) is twice continuously differentiable, with u(0) = 0,
u'(0) = o0, u/(00) =0, ¥/(-) > 0 and v”(-) < 0. The utility of a seller is —q; + ¢,
where the first term is the disutility to produce ¢; units of goods in the DM and
¢; is the linear utility from consuming in the CM. All agents discount future

utility at a rate 3 € (0,1).%

CM t DM CM t+1
buyers meet with sellers 7old” assets produce dividends
sellers produce goods "new” assets distributed to agents
in exchange for assets sellers consume goods produced by buyers
buyers consume goods portfolio choice

Figure 1: Timeline

During the day each buyer meets randomly with a seller and consumes the

good produced by the seller, while during the night buyers produce and sellers

8Thanks to these assumptions we can make clear that the specialness of safe assets does not
rely exclusively on risk aversion. See Gu, Mattesini and Wright (2016) for a discussion about
potential generalizations.



consume. In this economy welfare is maximized by the following first-best allo-
cation. In the DM buyers consume an amount ¢* of goods produced by sellers,
where ¢* satisfies v/(¢*) = 1. In the CM h = ¢ = ¢*.

Unsecured debt would support the first-best allocation, but it is ruled out
by the absence of a record-keeping technology and the impossibility for agents
to make binding commitments (Lagos, Rocheteau and Wright, 2017). Assets
can facilitate trade, meaning that they can allow buyers to reach a level of
consumption otherwise unfeasible.

There are two one-period-lived divisible real assets, in positive net supply
A, B > 0. Both assets pay dividends in terms of units of the CM good once this
market opens. Then, there is a supply of A, B new units of both assets, that
agents can buy at a price p® and p® (also in terms of the CM good), respectively.”?
Let us call the first asset A and the second one B. The two securities differ
because of their payoffs. Each unit of the asset A generates a stochastic dividend:
with probability m; its payoff is §; > 0, while with probability 7, = 1 — m
is 0, > 9;. We define the expected dividend as 4, and we assume there is
no serial correlation in the realization of the returns. The asset B has a non-
stochastic payoff, that we normalize to 1. The crucial assumption is that the
actual realization of the dividend of the asset A becomes public knowledge only

at the beginning of the CM.°

2.1 Markets

We start from the analysis of the CM. We will define the quantities of the
assets that an agent owns at the beginning of each sub-period using lowercase
letters: a for the asset A, b for the asset B. Notice that we ignore time subscripts

because we restrict the attention to stationary equilibria.

9We assume that buyers receive all the endowment of the new assets. Given the linearity of
preferences this is without loss of generality.

10Tt would be easy to introduce fiat money or long term assets in this framework, but this is
not essential for the purposes of this paper.



Centralized Market. The value function of a buyer in the CM is:
W (a,b) = max —h + BVb(d, V)

st. pld 4+ pW =h+8ja+b+p*A+ p'B

where j € {l,h}. The buyer chooses the amount of work to supply and the
portfolio of assets to bring in the next period, (a’,b"). He takes into account the
continuation utility in the DM, V?, the initial wealth, dja+b, and the endowment
of new assets. Notice that §; becomes public knowledge at the beginning of this
sub-period.

Substituting the budget constraint into the objective function, we get

W(a,b) = d;a+b+ p*A+ p’B + max —pd — pP + BV (d, V) (1)

Since the value function is linear in the initial wealth and the stochastic div-
idends are i.i.d., the choice of asset holdings is independent of the state variables
and the realization of 9.

The problem of the seller is derived equivalently, and his value function W¥ is
linear in the initial wealth. As we will discuss in section 3, in equilibrium sellers
never bring assets in the next period, then we do not report their problem.
Decentralized market. In the DM each buyer is randomly matched with a
seller and can use claims on his assets holdings as a medium of exchange.'!
Buyers and sellers know only the probability distributions of the payoff of asset
A. For the moment, agents do not receive any informative private signal. Buyers
make take-it-or-leave-it offers denoted by x = (g, d?, db), where d* and d° are the
quantities of the two assets that a buyer transfers to the seller in exchange for ¢
units of the good. Given the information set and the linearity of the CM value
functions, the surplus of the buyer is S (x) = u(q) — 6d® — d°, while for the seller
is §° (x) = —q + 6d* + d°.12

"Lagos (2011) and Venkateswaran and Wright (2014) show that in a large class of models
it is irrelevant if an asset is used as a medium of exchange or as a collateral. We will discuss
this assumption at the end of the section.

1214 is also useful to introduce the ex-post utility of buyers and sellers, defined as S;’ and S7,



Because of symmetric ignorance about the future realization of §;, asset A is
valued at its fair value §, that is predictable. A buyer entering in the DM with
this asset incurs no risk related to the consumption of DM goods, as in the case

of a risk-free security.

Proposition 1 If §a + b < ¢*, then g = da+b, d* = a and d® = b. Otherwise,
g =q*, 6d*+ d° = ¢*, while d* and d® are undetermined.

If the buyer owns a sufficient amount of assets he can afford to consume the
first-best quantity of goods. Otherwise, he deploys all his holdings of both assets
consuming a quantity da + b of goods. In both cases the buyers extracts all the
gains from trade. However, the main implication of Proposition 1 is that the
two assets are equivalent, in the sense that they support the same allocations.

If 0a > ¢*, asset A supports the efficient allocation and asset B is redundant.

2.2 Information acquisition

We assume that sellers can produce private information about the payoff
of asset A by incurring a positive disutility cost 6. Sellers can learn the exact
realization of ¢; after they have received an offer from a buyer, and before to
decide to accept or reject.'® Buyers do not have access to this technology and

cannot observe if sellers acquired information.' The game proceeds as follows:

Stage 1. The buyer makes a take-it-or-leave-it offer to the seller.
Stage 2. The seller decides to produce information or not.

Stage 3. The seller decides to accept or reject the offer. If there is a rejection,

the buyer cannot make a new offer.

Since the uninformed party moves first, this game has stagewise perfect in-

formation, so we look for pure strategy subgame perfect equilibria. Stage 2 is

with j € {l,h}. Ex-post utility differs from ex-ante utility only because § is replaced by d;.
13For example, this asset may be an asset-backed security and the seller can hire a financial
expert that has the ability to assess the underlying assets.

“Based on Rocheteau (2011) we do not expect buyers to have a gain from information
acquisition because they cannot take advantage of that. Sellers would understand that buyers
are informed. Then, buyers should play a signaling game and sellers would end up extracting
rents (see Rocheteau, 2011).



the crucial step: the problem of the seller is to compare the expected gain from
acquiring the information with the cost 6. At stage 1, the buyer makes an offer
that do or do not provide to the seller the incentive to produce information.
The buyer compares the continuation utility of the strategy with no informa-
tion acquisition, V¥, with the utility derived from an offer that gives the seller
the incentives to acquire information, V!. Let us define the indicator function

7(a,b) = Ly~ (g p)>v1(ap)- The value function of a buyer in the DM is defined as:
V¥(a,b) = 7(a, )V (a,b) + [1 = 7(a, )]V (a, b) 2)

Before to move to the derivation of VN and V!, we briefly discuss the choice
of the trading arrangement. We assume that assets are used as a medium of
exchange because it can be shown that the incentives to produce private infor-
mation would be the same with collateralized debt. Moreover, this assumption
allows us to isolate the implications of endogenous private information in a mi-
crofounded model with minimal and, in particular, well-accepted assumptions
about the environment (limited commitment and no record-keeping). Collater-
alized debt, instead, requires the specification a richer environment whose details

can have strong implications for the final results.'®

2.2.1 Strategy with no information acquisition

We first consider the strategy in which the buyer avoids the production of
private information.

Suppose that the buyer makes an offer x. If the seller does not produce in-
formation his expected utility is S° (x). An informed seller, instead, accepts to
trade only if observes the payoff 6, — in any equilibrium ¢ > d® 4+ §;d* — and his
expected utility is 7,5} (x). As a consequence, the seller will not produce infor-
mation if the expected profit from acquiring information, —m;S7(x), is smaller

than the cost of information acquisition, #. That is m (q — od* — db) < 4.

5We claim that our results can be retrieved with collateralized debt, but not in any model
in which assets are used as collateral. We address this discussion in a companion paper.

10



Therefore, the problem of the buyer can be defined as follows:

VN(a,b) = St (q,d* d’) + EW®(a,b
(ab)=  max (9.0%,d") + EW"(a,b)

st S0 (q,d“,db> >0 (3)

TS (q,d“,db) <0 (4)

The buyer maximizes his surplus, keeping into account the following con-
straints. First, d* < a and d® < b. Second, the seller gets a non-negative surplus
(equation 3), and he has no incentive to produce private information (equa-
tion 4). A main implication of (4) is that sellers are more inclined to produce
information as d® increases, because the cost of information per unit of asset
decreases. In particular, there exists a threshold value @ = 6 [m;(§ — &)] " such
that if d* < a the incentive constraint (4) is always slack. This threshold depends
positively on the cost of information acquisition, 6, negatively on a proxy of the
dispersion of the stochastic dividend, § — §;, and the probability of realization of
the bad state, .

We define g as the solution to v’ (§) = 6/9;, a(b) = max {(¢§ —b— 0/m) /;,a},
b = max {G — éa,0} and b(a) = ¢* — dmin{a,a}. The following proposition

summarizes the solution of the problem.

Proposition 2 If a < a@ or b > b, then ¢ = min{¢*,dd* + b}, with d* =
min{a,a}; when q = ¢* the amount of d° and d* are undetermined (but d* < a).
Ifa>a and b € [0,5), whenever b > 0, then ¢ = min {q, 090 + b+ 0/m}, with
d® = min{a,a(b)}.

We start considering the case in which b = 0 (Figure 2a). If a < a the
participation constraint of the seller (3) is binding, while (4) is slack. The buyer
consumes an amount of goods ¢ = min {¢*, da} and extracts all the surplus from
this transaction. If @ is sufficiently large, a > ¢*/d, this is the only solution for
all a and Proposition 1 applies. The most interesting case is when a < ¢*/0 and
a > a. Now (4) is binding, and the problem has two possible solutions.

First, if ¢ > da the constraint (3) is slack and buyers and sellers split the

11



S(q), q u (6d*) — §d*

|
|
a  a(0) ¢/s a

Figure 2: Optimal offer with no information acquisition.

gains from trade. Buyers give away an amount dd* of initial wealth in the CM
in exchange for §;d® + 0/m < 0d® units of consumption goods in the DM. The
buyer must provide to the seller an informational rent to avoid the production
of private information. Since this rent is increasing in d®, a trade-off arises, and
consumption of DM goods is at most ¢ < ¢*. At ¢ the marginal utility from
using the asset to buy goods in the DM is equal to the marginal utility from
using the asset in the CM, u' (¢) & = 4.

Second, if ¢ < da also (3) is binding. Buyers choose d* = a and ¢ = da, also
when a > a. They keep all the gains from trade, but they cannot get a greater
consumption.

We now consider the general case, in which b > 0 and da < § < ¢* (Figure
2b). When the holding of asset A is sufficiently small, a < a, buyers extract
all the surplus, and consumption is ¢ = da + b. Otherwise, when a > a we can
establish a pecking order in the use of the two assets. Buyers first deploy all their
holdings of the asset B, then use the asset A. If b > b buyers keep all the gains
from trade, but the threat of asymmetric information gives rise to an endogenous
upper bound: d* = @ < a. Consumption is éa + b. When b < b, instead, (3) is
slack and the consumption of buyers is ¢ = min {q, ;a + b+ 6/m;}. Notice that
asset B is always valued at face value. Therefore, buyers deploy their holdings
of this asset to minimize the informational rent of the sellers, that is increasing

in d®.

12



2.2.2 Strategy with information acquisition

Since avoiding information acquisition may be penalizing in terms of forgone
consumption, a buyer can prefer to let the seller produce information.

In this equilibrium of the game the seller discovers the payoff of asset A.
Therefore, it makes sense to consider a strategy in which the buyer proposes a
menu of offers with the following properties. First, the seller has the incentive
to produce private information. Second, the seller chooses one of the menu
offers. Third, the seller reveals his private information about asset A through its
choice. Since asset A has two possible payoffs, d; (low state) and d;, (high state),
we consider a menu including two offers. We denote this menu by {x;, x3,}, where
X; = {qj,dg,d’;} and j € {I,h}.

The menu is designed in order to maximize the expected continuation util-
ity of the buyer, mSP (x;) + m,S? (x1) + EW?(a,b), subject to a set of par-
ticipation and incentive constraints; the related value function is denoted by
V116 The seller produces information if his expected utility is nonnegative,
mS; (x1) + mp S5 (xp,) > 6. Besides, the production of information is not ob-
servable. Therefore, producing information must be not dominated by a trivial
strategy in which the seller saves the cost of information acquisition and always
choose one of the two offers, x; or xp, without being informed. This turns
out to be a generalization of the standard truth-telling conditions in asym-
metric information problems, and is represented by the following constraints:
Sp(x1) < 85 (xp) — 0/m, and S} (x5,) < 57 (x1) — 0/m. These constraints also
guarantee that a seller observing the payoff §; (d;,) chooses the offer x; (xp).
Finally, the seller must always get a non-negative surplus, namely S7 (x;) > 0
for j € {I,h}.17

Let us define ¢ as the unique solution to [u/(§;) — 1]md = 6 — 6. The

following proposition shows how the menu is composed:

16The full statement of the problem is reported in Appendix A.

17A further possibility is that the buyer does not propose a menu but a single offer x’ that
violates (4). In this case the seller would accept only if the payoff of asset A is §n. This
possibility is encompassed in our formulation, e.g. x;, = x" and x; = {0, 0, 0}.

13



Proposition 3 Suppose b € [0,q*). The menu {x;,xp} is implementable if and

only if a > a. In the optimal menu d;’ =b, q = 6d} +b and

di —di > a (5)

9
(85, — 0y)d% + p + 0pd$ + db (6)

For each b there exists a threshold a(b) (weakly decreasing in b) such that if
a > a(b) we have: q, = ¢*, df = max{0, (§;—b)/&} and (6) pins down 5,dS +dy,.
If a < a(b) we have: d = b, d¢ = a and (qn,d}) are jointly determined by (5),
(6) and

Th On — 01

u (6d*+0)—1= ?ZTU (qn) +¢ (7)

where € is the lagrangian multiplier associated to (5).

This strategy is implementable if and only if a > a because the menu of
offers must satisfy (5). Intuitively, the seller has the incentive to produce infor-
mation and reveal the actual payoff of the asset A only if the terms of trade are
sufficiently different between x; and x.'8

In the low state the seller extracts no rents, as ¢ = 0;d} + b. Instead, in
the high state the seller gets a surplus equal to 6/m;, + (65, — 0;)dj’. The first
component is the compensation for the cost of information acquisition. The last
component provides the incentive to truthfully reveal if §j, realized. If the seller
does not acquire information and always chooses x;, he gets a null payoff with
probability m; and a strictly positive surplus with probability 7. For the seller
the expected payoff of this strategy, which is increasing in df, should not be
greater than the payoff of the strategy in which he incurs the cost to produce
information. Then, the buyer must give an informational rent to the seller
(increasing in df') in the high state and a null surplus in the low state. Since
this is costly, d} is endogenously bounded by (5) and when df > 0 the maximal

amount of consumption in the low state is §; < q.

181t should be clear from the previous section that this is not an issue. When a < @ the
constraint associated with the threat of information acquisition is not binding. Therefore, the
seller will never let the seller produce private information.

14



Asset B relaxes the incentive constraints of the seller and allows the buyer
to extract a larger share of the gains from trade. Then, the buyer deploys all his
holdings b. By increasing d;’, the buyer can reduce dj' and the informational rent
in the high state. When b > §; the buyer must compensate the seller only for
the cost to produce information, and increasing ¢; does not affect the incentive
constraints.

The optimal quantity of good demanded by the buyer in the high state can
be equal to the first-best ¢*, provided that the buyer hold at least a(b) units of
the asset A, given a holding b of the other security. The informational rent that
the buyer provides to the seller in the high state is not correlated with df but

depends on the sunk cost §/m; and df."

3 Portfolio choice and equilibrium

Once we have derived VY and V!, we can characterize V? according to
(2). An obvious result is that buyers avoid asymmetric information when a is

sufficiently small or b is relatively large.
Lemma 1 Ifa <a orb > b(a), then V®(a,b) = V¥ (a,b).

The first result is trivial, because when a < a the buyer can extract the
maximum surplus from trading with the seller without facing consumption risk.
The second conclusion derives from the strict concavity of u(-) and 6 > 0.

The trade-off between the two strategies is the following. With no informa-
tion acquisition the buyer does not face consumption risk. He is constrained in
the use of asset A and consumption can be low. With information acquisition
there is no such a constraint. Eventually the buyer can consume the optimal
level of goods, ¢*, but he faces consumption risk. In general, V'V is greater or
smaller than V! depending on the characteristics of the assets, the cost to ac-

quire information and the initial asset holdings (see for example Figure 4 and

9For a sufficiently large a constraint (5) is slack, otherwise also in this case the buyer would
internalize the negative effect of increasing dj via the informational rent (6, — &;)df.
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footnote 23). The buyer may prefer information acquisition when his holding of
asset A is large, 6 is small and 6y /0; is high.

Once V? has been defined, we have to discuss the portfolio choice in the CM.
As shown in (1), the buyer has to choose the optimal amount of assets to bring
in the next DM, given V* and asset prices. Notice that we restrict our attention
only to the problem of the buyers because sellers have no need to bring assets in
the DM.?° Finally, the clearing of the market for assets requires A = A%(p®) and
B = B%p"), where A and B are the fixed supply of the two assets, respectively,

and A%(p?) and BY(pP) are the relative aggregate demand correspondences:
A = [ aa B = [ v )
[0,1] [0,1]

where a’(i) and ' (i) are the quantities chosen by the " buyer. At this point we

can state the definition of equilibrium.

Definition 1 (Equilibrium) A stationary equilibrium is a list of value func-
tions {Wb, Vb VN, VI}, a list of portfolio {a' (i), V' (i)}, a vector of prices (p*, p°),
a decision rule in the DM 7(a',V') and a list {x,x;,xp} such that: {da'(i),b' (i)}
solves (1) for each buyer i given V°; 7(a',b') returns the strategy chosen in the
DM given VN and V1; V is determined according to (2); x mazimizes V¥ and

{x;, %1} mazimizes V1; (p%, p?) are such that A%(p®) = A and B%(p*) = B.

The prices of the two assets are greater or equal to their expected discounted
dividend in the next CM, that is p* > 36 and p® > . The term of the right-hand
side is the fundamental value of each asset and reflects the role of the asset as a
store of value. The price of an asset departs from its fundamental value when it
facilitates trade in the DM, namely when an additional unit of this asset allows
a buyer to get a greater utility when trading in the DM. In this case, following
Lagos, Rocheteau and Wright (2017), we will say that the asset bears a liquidity
premium. Hereafter, we find more useful to focus directly on a measure of this

liquidity premium: R® = p®/(85) — 1 and R® = p?/3 — 1.

20Gince sellers care only about the payoff of the assets in the next CM, they do not demand
assets if p® > 6 and p® > B, while they are indifferent if p® = 36 and p® = 8. Then, we can
assume that they do not demand any asset.
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3.1 Equilibrium without information acquisition

First, we consider the case in which V* = V¥ for all a,b € R,..2! Both
assets are information-insensitive and safe, because in equilibrium there is never
uncertainty about their valuations in the DM. Buyers know ex-ante the quantity
of consumption goods they can get.

The portfolio optimization problem in (1) is a concave program. All buy-
ers enter in the DM with the same portfolio, and we can restrict attention to
symmetric equilibria.

Both assets are information-insensitive but they may not be equivalent. In-
deed, the threat of information acquisition may dampen the liquidity of asset A.
An asset can be freely used as a medium of exchange only if producing private
information is not possible or not convenient — because in equilibrium the profit

from information acquisition is always strictly smaller than its cost.

Proposition 4 Suppose A,B > 0, § > éa and V® = VN for all a,b € Ry. If
A # a there always exists a unique symmetric equilibrium. For any A, R® =
RV =0 and q = ¢* if and only if B > b(A). Suppose B < b(A). If A < @ then
R’ =R*>0. If A>a then R® > R* > 0, with R* =0 if A > a(B).

According to Proposition 4, the first-best allocation can be attained provided
there be a sufficient amount of securities, in particular of the asset B. In this
equilibrium (A, B) must be such that B + dmin{A,a} > ¢*. Since assets are
abundant, buyers consume the first-best level of DM goods. Additional units of
both assets are valued only for their role as a store of value and R? = R® = 0.

When the total amount of assets is scarce and A < a, buyers cannot afford to
consume the optimal quantity of goods. In this situation a marginal increase in
the supply of any of the two assets allows the buyer to expand his consumption
and surplus in the DM. Then, a buyer is willing to pay for both assets a price
greater than the fundamental value, and asset prices incorporate a liquidity

premium: R® = R* =/ (B + §A) — 1.

2In the Appendix C we derive sufficient conditions for &5, /01 and 6 that guarantee this result.
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Figure 3: Equilibrium with information-insensitive assets

If @ > ¢* /9, this would be the full characterization of all the possible equilibria
(Figure 3a). The constraint (4) would be always slack, and the two assets would
be equivalent, because they could support the same set of allocations. If A > ¢*/é
the first best would be attained, independently of the level of B. However, under
the hypothesis of Proposition 4 this is not the case.

When B <band a < A < a(B) buyers consume an amount of goods ¢ < q.
Then, an additional unit of both types of assets would allow an expansion of
consumption. The prices of both assets are greater than their fundamental value,

but R® > R® because asset A has a lower degree of liquidity:
0
R =u(BA+B+0/m)—1> u(51A+B+9/m)gl— 1=R"

When A > a(B) or B > b, instead, there exists an endogenous upper bound
on the amount of the asset A that buyers may want to transfer to sellers (yellow
and green area in Figure 3b). An additional unit of this asset does not allow
the buyer to increase his utility in the DM, then R* = 0. The price of the
other security, instead, includes a positive liquidity premium. In this equilibrium
q < q*, and only a sufficiently large increase in B can bring the economy to the
first best. The two assets are not equivalent, then they have different degrees of
safeness. The asset A is safe, but only because agents discipline themselves in

its use. The other asset, at the opposite, can be freely used.
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Proposition 5 Suppose B < b(A) and A > a(B). A marginal increase in B is

welfare improving if and only if B > b.

Depending on the initial amount of the asset B, a marginal increase in its
supply does not imply that the aggregate consumption (total surplus) in the
DM rises. In particular, when B is small (yellow area in Figure 3b) total welfare
does not change. From Proposition 2, in this region the total surplus into the
DM is u (¢) — ¢. Following a marginal increase in the holdings of asset B, the
buyer keeps the amount of consumption unchanged to ¢, but replaces asset A
with asset B, increasing its share of the gains from trade. This redistribution
happens up to l~), when the buyer takes all the surplus. Only from b onward
a buyer with a larger holding of the asset B does expand his consumption to
increase his surplus from the trade (green area in Figure 3b). In a symmetric
equilibrium this behavior holds in aggregate. Then, a marginal increase of B
does not necessarily cause an increase of the aggregate welfare, but it may only
involve a redistribution of surplus from sellers to buyers. We have positive effects
only if the asset B is already relatively abundant.??

It should be noted that the price of the asset B is always affected by a
variation in B, provided that B < b(A). In equilibrium, the price of the asset is
related to the surplus of the buyer. Then, as long as ¢ < ¢* an expansion of B

leads to a reduction of p°, although ¢ may not change.

3.2 Equilibrium with information acquisition

We now consider the case in which for some combination of A and B in equi-
librium buyers let sellers produce private information. We restrict the discussion
to the identification and the analysis of safety traps equilibria.

The identification of which asset is safe is trivial. When the asset A is
information-sensitive, buyers face uncertainty about its valuation and then about

consumption. The information-insensitive asset is special because it always guar-

22Tn Appendix B we show that this #rrelevance with respect to consumption can be retrieved
in a more general setting in which sellers have a strictly convex cost of production in the DM
and a strictly concave utility function in the CM.
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Figure 4: Optimal strategy in the DM with information acquisition

antees the same level of consumption. When b < ¢; and a > a(b) the buyer can

consume ¢* in the high state and §; in the low state; his expected payoff is:

71 [u(@) — d + 7 |ule”) — ¢ — fh (G =G e (9)

Therefore, an additional unit of the asset A will be valued only for its expected
dividend in the CM. At the opposite, an additional unit of the safe asset allows
the buyer to reduce the informational rent in the high state (when b < §;) or
to increase the consumption in the low state (when b > ¢;). Then, buyers are
willing to pay for the safe security a price greater than its fundamental value.
The main question is how a change in the supply of asset B can affect the

equilibrium. The following proposition reports the key result of this section.

Proposition 6 Suppose A > max{a(0),a(0)}. There exists a B’ < b(a) such
that for B > B’ the equilibrium is symmetric and VN (A, B) > VI(A, B).

Lemma 1 implies the trivial result that for B > b(a) in equilibrium all assets
are information-insensitive and the first best is reached. This is because the
asset B is so abundant that (4) is always slack and buyers reach the optimal
level of consumption. Proposition 6, instead, implies that in a safety trap all
assets become information-insensitive provided that the provision of the asset

B becomes sufficiently large, although lower than b(a) (see Figure 4).23 The

I A |
= =,

23 An output qualitative similar to Figure 4 can be produced by assuming u(q)
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economy would still be in a safety trap, but now both assets are safe and buyers
make the same portfolio choice. Therefore, the safety of an asset can depend not
only on its intrinsic characteristics but also on the provision of other types of
safe assets. Intuitively, avoiding information acquisition may not be a preferred
strategy when the buyer has a large holding of asset A. To avoid information
acquisition the buyer should limit the use of asset A. At the opposite, with
information acquisition the buyer can potentially (with probability ;) deploy
his holding of the asset A enjoying a large consumption. A greater holding of
the asset B reduces the relative benefits of information acquisition.?*

There are two final remarks. First, marginally increasing the supply of the
asset B may have no effects on welfare. Let us suppose that B < ¢; and we
are are in a symmetric equilibrium in which in all DM meetings sellers acquire
information. Then, buyers take advantage of a marginal increase in the supply
of the safe security by reducing the informational rent (5 — 6;)dj', while both ¢
and g do not change.

Second, since V? is not necessarily convex a symmetric equilibria may fail to
exist. In this case we should look for asymmetric equilibria, in which a different
fractions of buyers choose different portfolio of assets and, therefore, different

strategies in the next DM.

4 Conclusions

We discussed the role of safe assets in a model in which their status is en-
dogenously determined. Following Gorton (2017), we introduced endogenous
private information in a standard model in which unsecured credit is unfeasible,
and agents can use different assets to trade. We showed that assets with dif-
ferent degrees of safeness can coexist. Securities for which the threat of private
information is never relevant are a preferred medium of exchange. When they

are scarce, agents choose a suboptimal level of consumption, regardless of their

with n = 0.5, § = 0.01, m; = 0.5, § = 0.75 and 0, = 1.25. If we set 9 = 0.8 and J;, = 1.2,
instead, we would get V? = V¥ for all possible values of @ and b.

2“When b > §; a greater holding of the asset B is beneficial only in the low state. It allows
an increase of q;, while ¢, is capped at ¢*.
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holdings of other assets.

The benefits of an increase in the provision of the safest assets would depend
on their initial supply and the magnitude of the expansion. There are positive
welfare effects only when they are already sufficiently abundant, or when the
magnitude of the increase is significant. Otherwise welfare effects are null. This
result is significant because so far the main concerns have been about the fea-
sibility or the implicit costs associated with an increase in the supply of safest
assets. Consider, for example, the case of government bonds. A vast expansion
of their supply can jeopardize their status of safe assets (Caballero and Farhi,
2018), and its benefits must be traded off with the distortions introduced by
the taxes that are levied to support the new debt (Gorton and Ordonez, 2013).
Here, instead, it could be the case that there are no benefits at all, although we
consider the extreme case in which there are no costs associated with this policy.

Our results have potential implications also for monetary policy. Caballero
and Farhi (2018) argue that the effectiveness of some unconventional monetary
policies, such as large-scale open market operations, may be dampened by the
adverse effect of a reduction in the supply of safe assets. However, according to
our results this should also depends on their initial supply. The analysis of the
implications of this type of unconventional monetary policies is left for future

research.
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A Proofs

Proof of Proposition 1. The optimization problem of the buyer is the following:

—0d* — db
Jnax, u(q)

st. —q+0d*+d° >0 (10)

0<d*<a, 0<d’ <b
The Lagrangian can be written as follows:
L =u(q) —dd* —d* + M (—q +6d* 4+ d°) + Xad® + A3(a — d*) + M\ad® + A5 (b — d°)

and the first order conditions are

[q] :u'(¢) =M =0 (11)
[d]: =6+ MI+ Ao — A3 =0 (12)
[d): =14+ M +X—A5=0 (13)

From (11) we have Ay > 0 and (10) is binding, otherwise ¢ = co. We can rewrite (12)
and (13) as A\ = 1+ (A3 — A2)/d and A\ = 1 4+ A5 — A4, where it is clear that A3 > 0
implies A5 > 0. A\; > 1, otherwise ¢ > ¢* and A9, Ay > 0. But Ay, Ay > 0 imply ¢ = 0,
then A\; > 1. If A3 = 0, then A5 = 0, \y = 1 and ¢ = ¢* from (11). To have this
solution we need da + b > ¢*. Notice that d* and d” are undetermined but (10) pins
down dd® + d® = ¢*. If If A3 > 0, then A5 > 0, A\; > 1 and (10) pins down ¢ = da + b,
while d* =a and d®* =b. =
Proof of Proposition 2. The optimization problem of the buyer is the following:
qffilfﬁb u(q) — 6d* — d°
st. —q+06d*+d* >0 (14)
m(q—6d* —d°) <0 (15)

0<d*<a, 0<d"<b
The Lagrangian can be written as follows:

0
L =u(g) = 8d* — d" + M (—q+dd* +d°) + Ao (q+5zda+db+ﬂ> +
l
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A3d® + M(a — d®) + Asd® + Ag(b — d°)

and the first order conditions are

[q]: v/ (q) = A1 —A2=0 (16)
[da} =0+ A0+ A0+ A3 =X =0 (17)
(@] : =14+ X + X+ X5 — X =0 (18)

From (16) at least one constraint among (14) and (15) has to be binding, otherwise
Al =X =0and ¢ = .
Case I: A\; > 0, A2 = 0. We can rewrite (17) and (18) as \y = 1 + (A4 — A3)/d and
A1 = 14 X¢ — A5, where it is clear that Ay > 0 implies A\ > 0. A; > 1 by using the
same argument of the proof of Proposition 1. The optimal quantity of good that the
buyer want to consume is ¢*, the solution to u’'(¢) = 1. If da + b > ¢* then ¢ = ¢* but
d® and d° are undetermined. Otherwise, d* = a, d* = b and ¢ = da + b. Since this
solution exists if (15) is slack, we have to verify that this is true. Substituting (14) in
(15) and rearranging we get m;(§ — §;)d* < . Therefore, this solution exists as long as
a<a=0[m—05)]" orb>ba)=q* —dmin{a,a}. In the latter case d* < a.
Case IT: \; =0, Ay > 0. If 0 < d® < b, then A5 = \¢ = 0 and from (18) Ay = 1. Since
§/6;, > 1, from (17) necessarily Ag > 0, that implies d* = 0. But if d* = 0, then (15)
cannot be binding. Then d” = b. Having d® = b and d® > 0, substituting (17) in (16)
we get u'(q) = 6/0; + A4 and ¢ < G, where the latter is the solution to u'(q) = §/d;. The
existence of this solution requires a > a and b < b= G — da, otherwise (14) is binding.
Notice that for b < b and @ = @ we have u (6@ 4 b) — da — b = u (§,a + b + 0/m;) — da — b.
Case ITII : \; > 0, A2 > 0. Both (14) and (15) are binding. Substituting (14) in (15)
we pin down d® = a and the whole problem can be rewritten as

g}}?gu(éd +d°) —éa —d°
When éa+b < ¢* we have d® = b and q = da+ b. The existence of this solution requires
b<b<bla)anda>a. m
Proof of Proposition 3. Let b € [0,¢*) and define S7(x;) = —¢q; + d;d} + dlj’-7 with
1,7 € {l,h}. The problem is the following

max m [u(q) — &d? —db) + 7 [u(gn) — 6pdd — d8
a,qn,dg,d? dg,db [ () ! l] [ (qn) h ;J
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st mSE(x) + TS5 (<) = 0 (19)
SP(x) >0 (20)
Si(xn) >0 (21)
m Sy (xy) + 7 Sh(x1) < mSP(xi) + 7 Sh(xp) — 0 (22)
™Sy (%) + 7Sy (xn) < mST(x1) + 7S (%) — 0 (23)
S (x1) = Sf (xn) (24)
Si(xn) = S (x1) (25)

@, >0 0<di<a 0<d'<b 0<df<a 0<d)<b

Equations (22) and (23) imply (24) and (25), respectively. Therefore the latter can be
ignored. Moreover, given (20) equation (22) implies (21). Consider now equation (20).
Since the buyer maximizes his surplus, for any given dj and df’ it is possible to increase
¢ up to (20) be binding and (22) and (23) are still satisfied. To see this, let us rewrite

the two constraints as

0
Sy (x1) + (6n — 6)dff < Sp(xp) — P
0
Sp(xn) = (0n — d1)dy < 57 (x1) — .
Then
S a S 0 S S a 9
Sy (x1) + (6n — 6)df < Sp(xp) — ™ < Sp(xp) <SP (xp) + (6n — 6)djy — p—

that implies S} (x;) can be set to 0, as only the difference between df and df matters.
Then, (20) is binding. Finally, given (20) is binding and df > 0, (22) implies (19), that

becomes redundant. The problem can be simplified as follows:

max m [u (6idf + d)) — 6idf — d}] + 7, [u(gn) — Sndy — dj]

an,dftdydj, dj,
st (0n — 01)di < mn (—qn + Ondj + dp,) — 0 (26)
7Tl(qh — (Sldz — dZ) Z 0 (27)

>0 0<di<a 0<dj<b 0<di<a 0<d}<b
where (27) follows from (23). The Lagrangian of this problem can be written as:
L=m[u(§d! +d}) —&df —db] + mn [u(qn) — dpd — dby] +
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0
+ A7, |:_Qh + 5hdz + di — ; — (5h — 5l)d?:| +
h
9
+ Aoy (qh —0df —db — W) + A3d + Aad? + Asdf + Nedb + Argn+
1

+As(@—df) + g (b—db) + Ao (a—dft) + A1 (b—dp)

and the first order conditions are:

lqn] = T’ (qn) — Mimh + Aam + A7 =0 (28)
[df]:m [u (6d] +d}) — 1] 6 — M (6 — &) + A3 — As =0 (29)
[d]:m [ (6df +df) —1] + A — Ao =0 (30)
[d7] : —=TROn + MiTROR — Xamd + A5 — Ao =0 (31)
(2] : —7h 4 Mimh — dam + A6 — A1 =0 (32)

Firstly, A7 = 0, otherwise ¢, = 0. Secondly, if 0 < g, < oo, then from (28) A; > 0 and
then (26) is binding. Thirdly, substituting (26) in (27) we find the condition

0

@ —ar> 2
h l_m(é—él)

(33)
that implies a > d¢ > 0[m (6 — 6;)]' = @, df < a and A5 = As = 0. Notice that this
strategy is feasible iff a > a and from now on we assume that this condition is satisfied.
Forthly, from (29) and (30) we have d? < b iff ¢, = ¢*, but this is clearly not possible
because b < ¢* by assumption and from (29) ¢; < ¢* if df > 0; therefore d? =b.
Claim: ¢;, < ¢*. From (28) and (32) ¢, > ¢* implies d? = 0, then we can focus on the
case in which b = 0. Suppose a is sufficiently large such that A\;g = 0. By rearranging
(32) we have Aam; = (A1 — 1) mpdp. If Ay = 0, then A; = 1. From (28) ¢ = ¢*, and the
claim is correct. From (26) and (29) it is possible to retrieve the values of df and df
consistent with Ao = 0. We define them cZ? and J;ll, respectively. Consider now the case
in which Ay > 0. If ¢ > ¢" we must have dj; > Jﬁ, and djf > J? because (33) is binding.
But A2 > 0 implies A; > 1, and from (29) df < CZ? Since this is a contradiction the
claim is proved. Moreover, when A\;g = 0 we have Ay = 0.

The problem reduces to find a possible unique vector (qh, di,ds, dZ) such that the fol-

lowing conditions — derived from (28)-(32) — are satisfied:

7 [u' (qn) — 1] 0n = =Xam(0n — 01) + A1g (34)

T [u' () — 1] = =26 + Ax (35)
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™ [u’ (5ldla + b) - 1] (51 = (5h - (Sl) [7rhu' (Qh) + 7'('1/\2] - )\3 (36)
0
(0n — 0)dj' + qn + = Spdst + db, (37)
h
together with the relative complementary slackness conditions and (33).

Case I. Suppose df < a. Therefore A1g = 0 and from (34) we have g5, = ¢* and A = 0.
From (35), A¢ = A11 = 0. From (36), df is the solution to

Eéh—(sl

u (6,8 +b) — 1= — s

T 0

Let ¢ = ¢ (%5’15—7& + 1), where £(-) is defined as the inverse function of «/(-). Then
d? = max{0, (§; — b)/d;}, where df = 0 (A3 > 0) when b > §;. Given df, from (37) we
find 85 d$ + d%. We cannot pin down df and d%, although (33) must hold. Given b < ¢*,
this can be a solution if and only if a > a(b), where a(b) is a function of b that returns

the lowest value of a such that ¢, = ¢* given b. It can be retrived from (36)-(37) by

imposing g, = ¢* and d} = b:
~ a — a * 0
a(b) = max {dl +a, |:(5h —&)df +q" + - b:l /6h}
h

Notice that a(b) is weakly decreasing in b.

Case II. Suppose that A;; > 0. Then, from the complementary slackness condition
d% = b, A\¢ = 0 and from (35) g5, < ¢*. Then, from (34) we have A\j9 > 0 and d¢ = a.
It remains to determine df* and g, looking separately to the case in which (33) is slack
(A2 = 0) or binding (A2 > 0). If b > g, from (36) we have A3 > 0, that implies df! = 0.
In this case (33) is slack, A2 = 0 and, from (37), ¢ = dpa + b — 0/m,. Consider now
the case in which b < §;. If Aa > 0, df = a — 0[m (6 — &)]! and from (37) we have
gn = 6a + b+ 6/m. If the following condition is satisfied:

04, T, O — 6 0
W (- ) -1 « (v )
! 7Tl((5—51) i (5[ ! i

A2 is actually greater than 0 and we are done. If this is not true, Ao = 0 and (33) is slack.
Then, we can jointly solve for ¢, and df in the positive orthant of the (df,qs) space.
Considering (37), we have that gj, is monotonically non-increasing in df', it is equal to
dna—+b—0/mp, for d = 0 and it vanishes at df* = %. Looking to (36), we have:
df =0 for 0 < qn < Gn = =% & (T(b)), where T'(b) = o/ (b) — 1; df = (G — b)/d,

Op—01 Th

when ¢, = ¢*; dj’ is monotonically non-decreasing when ¢, < g, < ¢*. Therefore, given
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gn < ¢* there exists a unique vector (dff, ¢) that solve (36) and (37).
This is the solution when a < a < a(b). =
Proof of Proposition 4. Since we consider stationary equilibria with no information

acquisition the objective function of the portfolio optimization problem is the following:

a_ 3§ b _
max _p 5a/7P B

/ b a b
o ¥gdnd B 5 U +S8 (dd)

subject to (14) and (15), the usual nonnegative constraints for the choice variables and
d* < a', d’ < ¥. Since the objective function is concave and the inequality constraints
are continuously differentiable convex functions, the first order conditions are sufficient
to find a global maximum. Therefore, we can focus on symmetric equilibria. We main-
tain the same notation of the proof of Proposition 1. The first order conditions with

respect to g, d* and d® are (16), (17) and (18). The additional focs are:

p* — B
B

b _

0] : rF_c 3 b A + (2 (39)

[a'] : =M+Q (38)

where (; and (5 are lagrangian multipliers associated with the nonnegative constraints
for a’ and b’. Since we assumed A, B > 0 and the asset market must clear, in equilibrium
¢ = ¢ = 0. Let us define R* = p?/B — 6 and R® = p®/B — 1. We consider all the
possible cases in which R% R’ > 0 (otherwise there would be an infinite demand for
assets).

Case I: R® = R® > 0. In this case from (38) and (39) we have A4, A\¢ > 0, therefore
d* = a’ and d* = b'. Substituting (17) and (18) in (38) and (39), we see that R® = R®
requires Ao = 0, then a’ < a. In this equilibrium ¢ is such that R* = R® = u/(q) — 1
and ¢ < ¢*. Since we are considering symmetric equilibria, R* and R’ are retrieved
by substituting the market clearing conditions of the assets market in the first order
conditions. Then the existence of this equilibrium requires A < @ and B < b(A).

Case II: R® = R® = 0. In this case we have \y, \s = 0, therefore d* < o/, d® < b’ and
from (17) or (18) we have ¢ = ¢*. The existence of this equilibrium requires B > b(A).
Case III: R’ > R* > 0. In this equilibrium we have A4, A\g > 0, therefore d* = a’ and
d® = b'. However, R® > R® then substituting (17) and (18) in (38) and (39) we need
A2 > 0. Given d* = o/, we need ¢ = 6;a’ + b’ + 6/m < ¢ (otherwise d* < a’ and Ay = 0).
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Therefore, this equilibrium exists if A > @ and B < b and asset prices are such that:

R =u(5A+B+0/m)—1

R“:u(51A+B+9/m)%—1

Case IV: R® > R® = (. In this case we have Ay = 0 and )¢ > 0, therefore d* < o
and d” = b'. Since R® > R?, by substituting (18) in (39) we need Ay > 0. Now, A\ > 0
implies g < ¢* from (18). There are two possible cases. If A\; > 0, then A\s > 0 implies
d® = a and ¢ = éa + V. Therefore, this equilibrium requires A > @ and B € [Z;,I;(A)).
If Ay =0, then from (17) we have ¢ = ¢. Then this equilibrium requires B € [07 5) and
A > a(B).

Case V: R’ < R® This cannot part of an equilibrium because by substituting (17)
and (18) in (38) and (39) and using (16) we get

R =4/(¢) -1
0 — 0
0

R*=4u'(q) —1— X

Then R* = R® — )\, 5_55’, but R® > R’ implies 6 < §;, that is obviously impossible. m

Proof of Proposition 5. See case IV in the proof of Proposition 4. =

Proof of Proposition 6. The goal is to construct a symmetric general equilibrium in
which A > max {a@(0),a(0)}, B < b(a), prices are such that all buyers choose the same
portfolio (4, B) and V¥ (A, B) > VI(A, B).

Notice that for a given (a,b) we have VN > v if 8N > ST where we define SV as
the surplus of the buyer in the DM trade when private information is avoided, and S’
as the expected surplus in a trade in which sellers acquire information. Let us define
a = max {a(0),a(0)}. Since both a(b) and a(b) are decreasing in b, for any given b and
@ > a we have SN (&@,b) = SN (a,b) and S? (@’,b) = ST (a,b). Suppose b > 0 (but
this is not necessary). When a = @, SN /b is equal to (6 — &;)/8; for b € (0,0] and to
u (b+da) —1for b e [I;,B(d)), while 981 /0b = (6 — 6,)/8; for b € (0,§;] and equal to
mu' (b) =1 >0 for b € [g;,b(a)). Both derivatives are continuous.

At b(a) we have SN > ST and limy,,_5(5) 9S™ (a,b) /0b < limy,, g5y ST (@, b) /9b. There-
fore, by continuity there is always some b < b(a) such that SN ((z,B) > S! (d,i)) and
oSN (d,l;) JOb < 0ST (d, 5) /0b. Then, a vector of asset prices such that R* = 0 and
0> Rl <0SN (d, 13) /0b implies that the portfolio optimization problem of the buyers

has a unique local optimum. Then, all buyers choose the same portfolio of assets to
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bring in the DM. Therefore, if A > @ and B > b there exists a symmetric equilibrium

with no information acquisition. m
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B Risk averse sellers

We solve the problem of a buyer that wants to avoid the production of private in-
formation when the seller is risk averse. We suppose that the utility of the buyer is
U’ = u(q)—h, as in the baseline model, while the utility of the seller is U* = —c(q)+v(c).
We assume that: ¢(0) = 0, ¢/(-) > 0 and ¢’(-) > 0; v»(0) =0, v/(-) > 0, v"'(-) < 0 and

v(-) satisfies the Inada conditions. The problem is:

max  u(q) — 6d* —d°

g

st. —clg)+mv(p)+mpv(pn) >0 (40)
c(q) —v(p) <0/m (41)
d<b,  d*<a

where p; = d° + 6;d* and py, = d® + §,d*. Notice that the incentive constraint is derived
as in the baseline model. Before to solve this problem, let us suppose that (40) is binding
and substitute it in (41). We get:

v

TITh

v(pn) —v(p) < (42)

If we assume that (42) is binding and d® = b, we find the threshold a@(b). Notice that
a(b) is increasing in b, because of the concavity of v(-). Now we can write down the

Lagrangian:

L(g,d*,d") = u(q) — 6d* — d® + X1 [—c(q) + mv (1) + mv (pn)] +

A2 [—c(q) + v (p)] + A3 (b—d°) + Aa(a—d*) + Asd® + Xed”

The first order conditions are:

[q]: W'(g) — (M +X2)(q) =0 (43)
[d*]: =0+ X [mr (o) & + mrt (pr) On] + Aot/ (p1) 01 — A+ X6 =0 (44)
[d]: =14+ X [mr (o) + 7 (pn)] + Aot/ (01) = Az + A5 =0 (45)

Equation (43) implies that at least one constraint among (40) and (41) is binding.

Therefore, we consider separately the three possible cases.
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Case I: A\ > 0, Ay = 0. We can rewrite (44) and (45) as follows:

o () 5 () 5 = S (14 220 (40
! () s (on) = 05 (120 = ) (47)

As long as d* > 0 we have v/ (p;) > v/ (pn). Therefore, the LHS of (46) is lower than
the LHS of (47): they are both weighted averages of v/ (p;) and v/ (py,), with the first
putting more weight on v/ (ps). Then, Ay = 0 implies A3 > 0 and d* = b, while A3 = 0
implies A\¢ > 0 and d* = 0.

When A3 = 0, from (47) we have v/ (d®) = /(¢)/v(q), while from (40) we have c¢(q) =
v (db). These two equations must be solved for d” and ¢ and the solution is unique.
The first equation implies that ¢ is decreasing in d®, ¢ 1 oo when d® | 0 and ¢ 1 0 when
d® | co. The second equation implies that ¢ is increasing in d®, ¢ 1 0 when d® | 0 and
q T 0o when d® | co. We define this solution (b, g;).

When Ay = 0, from (46) we have

d(q)

0 )
mv' (b + 6,d%) gl + mpt (b + 8pd?) Fh = 7 (q) (48)

Using this equation and (40) we have a system of two equations in two unknowns, d* and
g. Also in this case the solution is unique. According to equation (48), ¢ is decreasing
in d*. When d* = 0 and b > 0, then 0 < g < oo satisfies v/ (b) = Z,,((?I)) When d* 1 oo,
g | 0. According to equation (40), ¢ is increasing in d*. When d* = 0 and b > 0, ¢

satisfies ¢(q) = v (b). When d® 1 00, ¢ T 00. Since b < b*, we have d* > 0 and the system
of equations has a unique solution. We define this solution as (a*,¢q,), where both a*
and g, depend on b.

When Ay > 0, d® = b, d* = a and ¢ is determined by (40).

This solution requires a < a(b).

Case ITI: \; =0, A2 > 0. We can rewrite (44) and (45) as:

V' (p1) % = Z/,((Z)) <1 4 M S A6) (49)
Vip) = 2/,((2)) (14 A3 = As5) (50)

Az = 0 implies A3 > 0 and d® = b. When \; = 0 the optimal consumption § is lower that

ga in Case L. To see this, notice that from (48) we have v/ (p;) & = il,(((é”)) — 221" (pn) o

< (Qa)
u(ga)

Suppose now that ¢ = g,. From (49) we have v/ (p;) % =

it implies v/ (p;) & <
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Zl,((';‘;)), that implies d* < a*. But this cannot be possible, because (40) is slack. Then,
for a given ¢, we would need a larger d®. Therefore, ¢ < ¢°.

When Ay = 0 we use (49) and (41) to pin down ¢ and d®. By using the same argument
for Case I it is possible to show that this system of equations has a unique solution.
Moreover, when A\y = 0 we have that ¢ does not change with b. Indeed, suppose that b
increases and d* is unchanged. From (41) we have that ¢ must increase and this implies
that ¢/(¢)/u’(q) increases too. But also p; increases, then the LHS of (49) decreases and
we have a contradiction. Therefore, if b increases we need d® to decrease in order to
keep p; constant.

When Ay > 0, d® = b, d* = a and ¢ is determined by (41).

The existence of this solution requires a > a(b) and ¢ > g, where g solve (40) when it is
binding and d® = b, d* = a(b).

Case III: \; > 0, Ay > 0. In this case d® = b, d* = a(b) and q is determined by (40).

This solution requires a > a(b) and g > q.
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C Sufficient conditions for V? = V¥

In this appendix we derive sufficient conditions for V? = VN, with § > da. The defini-
tions of ¢, @, b, §;, @ and & are those in the main text; here we define b = b (@). Moreover,
we also define S'(a,b) = ™S} [x;(a,b)] + m, St x5 (a,b)] and SN (a,b) = S [x*(a,b)],
with x;, xj, x* the optimal choice in the DM given (a,b). The result is derived in
different steps.

Let us define I'(b) = m; [u (b) — b] + 7y, [u (¢*) — ¢* — 8/73] and « a constant in the open
interval (1/2,1).

Lemma 2 There ezist a k € (0,1) and a positive increasing function 0*(8;/0) such that

for 61/6 > k and 6 = a8*(6;/8) we have b > 0 and T'(b) < max, SN (a,b) for all b.

Proof of Lemma 2. Suppose a is sufficiently big, such that a > argmax, SV (z,b)
holds for all b (it is sufficient that this holds at b = 0) and b € (0,b). Then, we have:

u(q) - (q—;)5l+”lb for b € [0, b]
SN(a,b) = u(b+da) — b—oa for b € [b, ]
u(q*) —q* for b>b

Let us define ¢(z) = o'~ " () and 67 (8,/0) = £ (5/8)) M For a given ¢;/4, we have
that § < 6*(8;/8) implies § > da and b > 0. By construction SN (a,b) is continuous in b
for any a, 0;/5 < 1 and 0 € (0,0%(6;/9)). Note also that for §;/d T 1 we have § 1 ¢* and,
provided 6 = af*, da T aqg*.

Fix b and 0 = af*(6;/5). If §/6 T 1 we have SV (a,b) 1 u(q*) — ¢* > ['(b). As §;/6
decreases, S™(a,b) decreases too, while I'(b) increases (because 6 decreases). Then
there exist some &(b) > 0 such that for §,/6 > k(b) we have S (a,b) > I'(b). Then it is
sufficient to take k = max&(b). m

Lemma 2 is derived with respect to §/d;, but since 6 = m;0; + 71,05, the same result holds
if we work in terms of &y /9;. Hereafter, we fix o € (1/2,1) and 6* is a function defined

as in Lemma 2.

Lemma 3 Define o’ = max{a(0),a(0)}. There exists a x € (0,1) such that if 6;/6n > K
and 0 = af* then SN (a’,b) > ST(a’,b) for all b.

Proof of Lemma 3. Firstly notice that I'(b) in Lemma 2 is equal to S’(a’,b) for
b > G;. According to Lemma 2 there exists £ € (0,1) such that for 6;/d, > k and
0 = af* we have SN (a’,b) > ST(a’,b) for b > G;.
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Let us now consider the partial derivatives of ST and SV with respect to b for b € (0,b):

Sg: WhghT:&Z%fl forbe(O,cjl)
m [u (b)) —1] < 5%;5’ for b € [4;, D)

o _ 55—;” for b € (0,b)
b — ~
[u' (6a+b) — 1] < 252 for b € [b, D)

Since SN (a/,4) > ST (d/,§), if G < b then SN (a’,b) > ST (a’,b) also for b € [0, G]. If
G > b, then SN (a’,b) < ST (a/,b) for b€ [0,G;). m

According to the previous lemma, there exist conditions that guarantee max, S™ (a, b) >
max, ST(a,b) for all b. Given the linearity of W’ we can fix a k = K such that

max, V" (a,b) > max, V(a,b) for all b.

Proposition 7 Suppose v”'(-) > 0, & /6, > max {&, /7, } and § = a*. Then a(b) <
a(b) and Vb = VN,

Proof of Proposition 7. We start proving that V" (a,0) > V{(a,0) for all a > a.
Later, we generalize this result to all b > 0.

Let us assume b = 0. Firstly, notice that lim,_,z+ VY =V’ > 0, because by strict concav-
ity of u(-) we have u (§;a + 0/m;)—da = w (6a)—da > m [u (§;a) — dja]+mp, [u (0pa) — Opal >
lim,_,z+ S¥(a,0).

Now, we show that % < 66—‘; for all @ > a. Since aa—wf is the same under both
strategies, it is just sufficient to check the marginal payoff in the DM. Then, the relevant

partial derivatives are:

m [’U/ (51((1 - d)) - 1} o + [u’ (510, + 9/7Tl) o — 5h} for a € (C_L,CLH]
Si=1m (o (qn) — 1] 0y, for a € [a”,a(0))
0 for a > a(0)
GN _ u (§la+9/m)él—5 for a € (7,5,(0))
0 for a > a(0)

where a” is such that for a < a” we have df — df = a.
Since v > 0, if a” > a(0), then SI > SN. Then ‘98—‘;1 > % for all @ > @ and
a(0) < a(0). This also implies that if VI > V¥ for some a, then VI > V¥ for

all @ > a. But this is not possible, because 0;/d;, > % and Lemma 3 implies that
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VN (a(0),b) > VI(a(0),b).

If a” < a(0), then S > SN for a € (a@,a”]. Since both S! and S are decreas-

ing, for @ > a” we must check that S has a slope lower than SZ in absolute terms;

since at a” we have SI > SN this would guarantee that SI and SV never cross and
9qn

a(0) < a(0). By taking second derivatives, we need |u”(gn)mrdn G| < |u”(qn)mnd7| <

|u"" (8,0 + 0/m;) 67|, where the first inequality derives from % < 6". Then

W)

" 821 < Ju” (5 0 62
W (gn)mndp| < |u” (o +0/m) 6| = [ (610 + 0/m) | ~ mho?

Since u”’(-) > 0 the LHS is < 1, while the RHS is > 1 because §;/6, > /7;,. Then

a{;/: > 86% for all @ > @ and a(0) < a(0). This implies V¥ (a,0) > V(a,0) for all a.

For b > 0 the proof follows the same logic above as long as b < b. For b > b the result

is immediate from Lemma 3. m
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