
Dynamics of Secured and Unsecured Debt Over the

Business Cycle

Paul Luk∗ Tianxiao Zheng †

Abstract Firms have heterogeneous debt structure. High-credit-quality firms rely al-

most exclusively on unsecured debt and borrow with lower leverage ratios than low-credit-

quality firms. In this paper, we develop a tractable macroeconomic model featuring debt

heterogeneity. Unsecured credit rests on the value that borrowers attach to a good credit

track record. We argue that borrowers and lenders are more cautious in the unsecured debt

market, so high-credit-quality firms have lower leverage ratios. Moreover, our model gen-

erates procyclical unsecured debt and acyclical secured debt, consistent with the US data.

Our model with heterogeneous debt has a smaller amplification effect than a model featuring

secured debt only.

JEL Codes: E32, E44, G32

Key Words: Secured debt, unsecured debt, corporate debt structure, financial acceler-

ator

∗Department of Economics, Hong Kong Baptist University, The Wing Lung Bank Building for Business
Studies, 34 Renfrew Road, Kowloon Tong, Hong Kong, China. E-mail: paulskluk@hkbu.edu.hk
†Shanghai Advanced Institute of Finance, Shanghai Jiao Tong University, 211 West Huaihai Road, Shang-

hai 200030, China. E-mail: txzheng@saif.sjtu.edu.cn

1



1. Introduction

How do financial frictions affect business cycle fluctuations? Standard macro-finance

models often assume a uniform debt structure where collateralized credit is the main channel

that propagates and amplifies shocks. While this approach may help in building tractable

theoretical models, it ignores the fact that firms are financed by different types of debt. In

the cross section, Rauh and Sufi (2010) finds that a substantial fraction of a firm’s external

debt financing is based on unsecured debt. Over the business cycle, Azariadis, Kaas and

Wen (2016) find that while secured debt barely moves together with output, the unsecured

part of firm debt is strongly procyclical.1

Given this evidence, the goal of this paper is to understand whether, and how, the con-

clusions of standard models of financial frictions change when firms have access to different

debt instruments. We address two specific questions. First, what drives the cyclical behavior

of firm’s secured and unsecured debt? Second, how do the amplification effects generated

by financial frictions change when the inclusion of unsecured debt is considered.

To answer these questions, we cast debt heterogeneity into a tractable dynamic stochastic

general equilibrium model. In the model, firms borrow secured or unsecured debt subject

to an idiosyncratic productivity shock and a costly-state-verification problem similar to

Bernanke, Gertler and Gilchrist (1999) (henceforth BGG). In secured borrowing, the creditor

can recover a fraction of a firm’s assets in the event of default. In unsecured borrowing,

the creditor receives no payment in the event of a default while the borrower may keep a

fraction of revenue and keep operating. Lenders can observe firms’ track record which evolves

endogenously, and a firm that has defaulted before is excluded from unsecured credit in the

future. In equilibrium, firms with a good track record (G firms) borrow unsecured debt only

and enjoy a higher franchise value than firms with a bad record (B firms).

We show that G firms operate with lower leverage than B firms, consistent with the US

data. This is because both lenders and borrowers in the unsecured debt market are more

cautious than in the secured debt market. Unsecured debt lenders are more cautious because

they receive no payment when a borrower defaults. Figure 1 illustrates why borrowers of

unsecured debt are more cautious too. The blue solid (red dashed) line shows the marginal

value of net worth of a secured (unsecured) debt borrower conditional on a realization of

the idiosyncratic shock ω in the optimal contract. For each contract, the borrower defaults

when the realization of shock is below a threshold, as indicated by the flatter line segment

in each line. When a secured debt borrower defaults, the borrower’s firm value is zero. But

when a unsecured debt borrower defaults, its expected firm value remains positive because

the borrower may keep some revenue and keep operating in subsequent periods. Borrowers

1In this paper, we use ‘collateralized debt’ and ‘secured debt’ interchangeably.
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Fig. 1. Plot of marginal value of net worth against the realized idiosyncratic shock ω. Analysis is based on
the steady state under the calibration in Section 5. The blue solid line shows the value function for bad (B)
firms which borrow secured debt. The red dashed line shows the value function for good (G) firms which
borrow unsecured debt.

in both contracts have a risk-shifting incentive because they enjoy the upside risk above

the face value of their debt and leave the creditors to bear the downside risk. Since the

red dashed line is less ‘convex’ than the blue solid line, borrowers of unsecured debt care

more about the downside risk and less about the upside risk, so they are more cautious than

borrowers of secured debt. But since lenders and borrowers in the unsecured debt market

are more cautious, borrowers of unsecured debt (G firms) have a lower leverage and default

less often.

Second, under reasonable parameterization, unsecured debt is more procyclical than

secured debt in our model. Consider a negative TFP or financial shock which reduces the

current stock of capital and increases the expected returns on capital. Since both lenders

and borrowers of unsecured debt are more cautious, the shock induces a bigger increase in

the leverage ratio in B firms than G firms. Moreover, since B firms increase their leverage

ratio by more when the expected return is higher, the reputation of being a G firm becomes

less valuable in a downturn, and, ceteris paribus, they default more often. As a result,

lenders have an incentive to cut their lending disproportionately on unsecured debt to G

firms. These effects lead to a more positive correlation between output and unsecured debt
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than secured debt. Our simulation based on a calibrated model using US corporate debt

data can generate strongly procyclical unsecured debt and weakly procyclical secured debt,

and these results match our empirical findings based on actual US data.

An important implication of our paper is that the introduction of unsecured debt weakens

the financial accelerator effect in BGG. The financial accelerator effect exists in both secured

and unsecured contracts. Since the steady-state leverage ratio of unsecured debt borrowers

is lower than that of secured debt, and unsecured debt borrowers default less often, an econ-

omy with a larger fraction of unsecured debt has lower aggregate leverage and less volatile

macroeconomic fluctuations. Our simulation results suggest that this dampening effect is

quantitatively important. For example, in response to a one standard deviation negative

productivity shock, financial frictions in the BGG model amplify the fall in investment by

about 56% (relative to a frictionless RBC model) one year after the shock, but our model

with heterogeneous debt amplifies the fall only by 40%. Furthermore, the initial falls in

aggregate net worth and debt in the BGG model are 44% and 47% larger than our model

respectively. Overall, these results suggest that the standard one-sector BGG model may

overstate the amplification effects of a financial accelerator mechanism.

Finally, we consider several extensions of the model with more realistic features in the

firm sector. We allow for (1) positive recovery ratios for creditors of unsecured debt; (2)

exogenous upgrading of credit ratings; (3) predetermined productivity differences in the

firm sector; and (4) a mixed debt structure in low-credit-rating firms. Our key mechanism

still exists and unsecured debt remains more procyclical than secured debt in each of these

extensions.

Our paper is related to two strands of literature. First, this paper is related to a vast

literature incorporating financial frictions into macroeconomic models. This paper adopts

a costly state verification approach because it is straightforward to endogenize default. See

Carlstrom and Fuerst (1997), Bernanke, Gertler and Gilchrist (1999), Christiano, Motto and

Rostagno (2014) and Nuno and Thomas (2017). By contrast, default is eliminated as an

equilibrium outcome in models in which financial frictions arise due to limited enforcement

problems (see for example Kiyotaki and Moore (1997), Meh and Moran (2010), Jermann

and Quadrini (2012) and Gertler and Karadi (2011)).

Second, there is a large theoretical literature on corporate debt structure, following Di-

amond (1991), Besanko and Kanatas (1993) and Boot and Thakor (1997). This literature

focuses on the determinants of a firm’s financing based on bank debt versus corporate bonds.

For instance, Diamond (1991) argues that high credit quality firms have good reputations

allowing them to avoid the additional costs of bank debt associated with monitoring. Our

model is in this spirit. Chemmanur and Fulghieri (1994), Bolton and Freixas (2000) and

De Fiore and Uhlig (2011) argue that banks have an information advantage about a firm’s
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profitability. Such information is particularly useful for assessing the risk of low-quality bor-

rowers. Empirically, Denis and Mihov (2003) find that credit quality is a major determinant

of a firm’s debt structure, with higher credit quality firms choosing public debt and lower

quality firms choosing bank loans. Rauh and Sufi (2010) show that high credit quality firms

rely exclusively on unsecured debt; whereas low credit quality firms rely more on secured

debt. This literature, however, does not study the macroeconomic effects of corporate debt

structure.

A few papers discuss debt structure and its relation to the macroeconomy. De Fiore

and Uhlig (2015) assume that bank monitoring yields useful information about relatively

low productivity firms. They find that the flexibility in substituting alternative instruments

by firms reduces macroeconomic volatility. In Crouzet (2017), firms borrow partly through

banks because banks are more flexible in debt restructuring. The paper argues that since

bond finance cannot be restructured in the future, firms switching from bank finance to bond

finance will deleverage, which worsens the negative macroeconomics effects of a shock to the

banking sector. Our paper addresses different aspects of debt choice by studying secured

versus unsecured debt to explain the puzzle about the cyclicality of these debts. In terms of

aggregate implications, we emphasize that due to different payoff structures, unsecured debt

borrowers have lower leverage. Therefore, in an economy with a large fraction of unsecured

debt, the amplification due to financial accelerator mechanism is weaker.

The work of Azariadis, Kaas and Wen (2016) is most relevant to ours. Their model

features multiple equilibria brought by unsecured debt and relies on sunspot shocks to gen-

erate persistent and highly volatile dynamics of macroeconomic variables. They argue that

fluctuations in unsecured debt, but not in secured debt, are driven by sunspot shocks, and

that sunspot shocks account for around half of output volatility. In this paper, we show

that the nature of secured and unsecured debt contracts implies that borrowers and lenders

of unsecured debt are more cautious, and therefore the leverage ratios of unsecured debt

borrowers are less volatile. Our simulation results demonstrate that even with only fun-

damental shocks, our endogenous mechanism can account for the relative procyclicality of

unsecured debt observed in US data.

The rest of the paper is organized as follows. Section two provides empirical analysis.

Section three describes the credit contracts. Section four embeds the debt contracts in a

DSGE model. Section five describes calibration of the model. Section six discusses the

model properties and quantitative results. Section seven compares the benchmark model

with a standard BGG model. Section eight discuss four extensions to our benchmark models.

Section nine concludes.
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2. Empirical analysis

In this section, we present important stylized facts about firm capital and debt structures.

Our main findings can be summarized as follows:

1. Debt structure is closely related with firm’s credit quality. High-credit-quality firms

rely almost exclusively on unsecured debt while low-credit-quality firms have a sub-

stantial share of secured debt.

2. A firm’s leverage is countercyclical and there is huge heterogeneity among leverage ra-

tios across credit quality distributions. In particular, high-credit-quality firms operate

with relatively low leverage while low-credit-quality firm use higher leverage.

3. Unsecured and secured debt show different dynamics along the business cycle: unse-

cured debt is strongly procyclical, while secured debt is at best weakly procyclical.

We begin with the description of data and variables in our sample. The sampling uni-

verse includes public traded non-financial and non-utility U.S. firms included in Compustat

with a long-term issuer credit rating in the last one year from 1981 to 2017.2 There are

1142 rated firms in the sample. In line with Azariadis, Kaas and Wen (2016), we use the

item “mortgages and other secured debt” to measure secured debt. We then attribute the

difference between “long term debt + total current debt” and “mortgages and other se-

cured debt” to unsecured debt. To clean the data, we remove those firm-year observations

where any of the variables is missing, negative, or secured debt exceeds total debt. We also

winsorized all firm-level variables at 1% and 99% levels to remove outliers.

We measure leverage as the sum of long-term debt and total current debt divided by

total assets. Panel A of Table 1 shows summary statistics for the leverage of firms in the

sample. Rated firm-year observations have a mean leverage ratio of 1.74 and a negative

correlation with contemporaneous GDP -0.15. The dynamics of observed leverage for all

observations over the business cycle is summarized in Column 4. The results show counter-

cyclical dynamics for the average firm, with a correlation between leverage and GDP of

-0.37, consistent with the findings of Halling, Yu and Zechner (2016). Panel B shows the

leverage ratios across credit quality distributions. Interestingly, we observe that leverage

stays low for firms with high credit ratings and jumps to more than 2.0 for firms rated CCC

and below, implying a big difference in a firm’s financing choice and capital structure.

Next we focus on how debt structure varies across the credit-quality distribution. Figure 2

plots the time series of unsecured debt share by credit rating. On average, 75% of rated firms’

2Coverage by Capital IQ is comprehensive only from 2001 onwards, therefore we restrict our main sample
to Compustat. This allows us to have long enough sample periods to calculate correlations and other business
cycle moments.
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total debt financing comes from unsecured debt, implying a non-negligible role of unsecured

debt in firm credit. Moreover, there is debt heterogeneity. Unsecured debt constitutes a

substantial part of high credit quality firms’ debt financing and is much lower for firms with

low credit ratings. In particular, the share of unsecured debt for BBB and above rated firms

ranges from 0.75 to 0.90. In contrast, it drops down to around 0.6 for BB+ and below

rated firms. Note that the difference in unsecured debt share between high and low credit

rating is smaller than what is found by Rauh and Sufi (2010). One reason for this is that

Compustat is biased towards large public firms which have greater access to bond markets

and other forms of unsecured debt financing. Therefore we explore the debt information for

private firms in Capital IQ as well. Figure 2 shows the time series of the unsecured debt

share for samples obtained from Compustat and Capital IQ. Once private firms are included,

the disparity in unsecured debt shares based on credit ratings increases substantially. For

instance, the average unsecured debt share in Capital IQ for BBB firms is 0.81, which is

higher than 0.49 for B- firms. Moreover, the differences in debt structure widens over time

after 2000, represented by a sharply declining use of unsecured debt by low credit rating

firms and a steadily increasing use of unsecured debt by high credit rating firms.

In line with the previous literature, the time series variation shows that unsecured debt

plays a much stronger role in output dynamics than secured debt. We deflate the annual time

series from Compustat by the gross value added index for business (a price index constructed

by the Bureau of Economic Analysis), and detrend all series using HP filter (smoothing

parameter = 100). As shown in Table 2, the contemporaneous correlation between output

and unsecured debt is 0.48 and but only 0.06 for secured debt. While our sample focuses

on firms that are credit-rated, the vast majority of U.S. firms are not. To complement, we

also compute the cyclical properties for all firms regardless of credit rating. The correlation

between output and unsecured debt is 0.50 and s 0.15 for secured debt, similar to the result

obtained from our main sample, suggesting that the results are robust.

The empirical findings above confirms Azariadis, Kaas and Wen (2016)’s key result that

unsecured firm credit is more procyclical than secured credit. This finding suggests that

macro-finance models should not only analyze secured credit, but also look at unsecured

credit. In the next session, we build a model that features both secured and unsecured debt

contracts. We show that by taking into account debt heterogeneity, the model can explain

the stylized facts from US data.
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Table 1
Summary statistics on leverage.

Panel A: Sample Summary Statistics on Leverage
Rated Only All Observations

Correlation Correlation
Mean with GDP Mean with GDP
1.78 -0.15 1.83 -0.37

Panel B: Leverage Ratios Across Quality Distribution
Leverage Ratio Leverage Ratio

AA and above 1.53 B- and below 1.95
BBB and above 1.62 CCC and below 2.13
BBB- and above 1.65 CC and below 2.31

This table reports summary statistics of firm leverage. Statistics are calculated for
the Compustat sample of U.S. rated firms and all firms (both rated and non-rated) in
Panel A. Panel B summarizes the leverage ratios across credit ratings.

Table 2
Debt volatilities and correlations with GDP.

Rated Only All Observations

Std. Deviation Corr. with GDP Std. Deviation Corr. with GDP
Secured Debt 10.16 0.06 10.07 0.15
Unsecured Debt 13.94 0.48 15.29 0.50

This table reports the standard deviations and contemporaneous correlations of debt with GDP. The left
panel shows rated firms only. The right panel shows all firms (both rated and non-rated). GDP is deflated
by the GDP deflator. Debt is deflated by business gross valued index. All series have been logged and HP
filtered with λ = 100.
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Fig. 2. This figure shows the share of unsecured debt for public and private U.S. firms by credit rating.
(Compustat, 1981-2016 and Capital IQ, 2001-2016)

3. Model – credit contracts

In the firm sector, there is a unit measure of firms j ∈ [0, 1]. Each firm carries a publicly

observed label i ∈ {G,B} which denotes high and low credit quality respectively.3 The label

may change over time and we discuss how the label determines a firm’s borrowing options

later. Firms produce with the following Cobb-Douglas production function:

Y i
jt = At(ωjtK

i
jt−1)α(Lijt)

1−α, (1)

where At denotes the TFP of the firm sector, and ωjt is an idiosyncratic shock to a firms’

capital quality. The idiosyncratic capital quality shock follows a log-normal distribution with

mean 1 and variance σ2
t−1, i.e., log(ωjt) ∼ N(−1

2
σ2
t−1, σ

2
t−1). The cumulative distribution

function is F (ωt;σt−1). The idiosyncratic shock is independent across firms and time, and

orthogonal to aggregate shocks.

In period t − 1, a firm with label i purchases capital Ki
jt−1 at the price Qt−1. At the

beginning of period t, the firm faces an idiosyncratic productivity shock, so effective capital

becomes ωjtK
i
jt−1. The firm then hires labor, produces and sells depreciated capital to capital

3Note that there is no intrinsic difference between firms with different credit quality, however. This
assumption is relaxed in Section 8.3.
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producing firms. The marginal product of capital rKt is defined such that rKt (ωjtK
i
jt−1) ≡

maxLijt{Y
i
jt−wtLijt}.4 The optimal choice of labor requires wtL

i
jt = (1−α)Y i

jt, which implies

that all firms have the same labor to output ratio. It is helpful to define the average return

on capital of the firm sector as:

RK
t ≡

rKt + (1− δ)Qt

Qt−1

. (2)

The return on capital of firm j is given by ωjtR
K
t .

A type-i firm has net worth N i
jt−1 in period t− 1. It borrows Bi

jt−1 from investors with

one-period risky debt contracts to finance its purchase of capital. Each loan contract is

subject to financial frictions because, as in BGG, lenders do not observe the realization of

ωjt. However, lenders observe the label of the firms. So, financial contracts available to a

firm depends on the firm’s label. Consistent with stylized fact 1, we assume that G firms

and B firms have different debt structures. G firms can issue secured and unsecured debt,

but B firms can only issue secured debt.5

Let us describe secured debt contracts (issued by B firms) first. A secured debt contract

is similar to that in BGG. If a B firm defaults, lenders have access to the firm’s asset. Similar

to De Fiore and Uhlig (2011), we assume that when a B firm borrows secured debt, lenders

conduct initial monitoring of the firm which costs the firm a fraction κ of its net worth NB
jt−1.

So, lending to the firm is BB
jt−1 = Qt−1K

B
jt−1 − (1− κ)NB

jt−1. The optimal contract may be

characterized by a gross non-default loan rate, ZB
jt , and a default threshold, ω̄Bjt, where

ω̄BjtR
K
t Qt−1K

B
jt−1 = ZB

jtB
B
jt−1. (3)

When ωjt ≥ ω̄Bjt, the firm repays the promised amount ZB
jtB

B
jt−1. If ωjt < ω̄Bjt, the firm

goes bankrupt. The lender monitors the firm and the net receipt of the lender is (1 −
µ)ωjtR

K
t Qt−1K

B
jt−1, where µ is a linear default cost. The payoff structure of secured debt is

summarized in Table 3.

Table 3
Payoff structure of secured debt.

Defaults: (ωjt < ω̄Bjt) Does not default: (ωjt ≥ ω̄Bjt)

B firm Goes bankrupt. Repays debt and keeps profit.
Lender Gets liquidation value Receives repayment.

of the firm.

We now turn to unsecured debt contracts. A G firm issues unsecured debt costlessly.

4This means that rKt ≡ αAt[(1− α)At/wt]
(1−α)/α.

5In Section 8.4, we consider an extension in which B firms use a mixed debt structure.
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We restrict our attention to a case in which the cost advantage κ is large enough so that G

firms issue unsecured debt only. The unsecured debt issued is given by BG
jt−1 = Qt−1K

G
jt−1−

NG
jt−1. The firm promises a gross non-default loan rate ZG

jt . We can similarly define a cutoff

threshold ω̄Gjt, where

ω̄GjtR
K
t Qt−1K

G
jt−1 = ZG

jtB
G
jt−1. (4)

When ωjt < ω̄Gjt, the G firm defaults. When ωjt ≥ ω̄Gjt, a G firm may choose to re-

pay the promised amount ZG
jtB

G
jt−1 or default. If a G firm defaults, it undergoes debt

restructuring. With probability ζ, debt restructuring is successful and the firm retains

(1 − µ)ωjtR
K
t Qt−1K

G
jt−1, but it loses its G label and becomes a B firm in future.6 With

probability (1− ζ), debt restructuring is unsuccessful, the firm shuts down and has nothing

left. Whenever a G firm defaults, lenders do not receive anything.7 Without loss of gener-

ality, assume that the G firm chooses to default when ωjt < ω̃Gjt, where ω̃Gjt ≥ ω̄Gjt, then the

payoff structure of unsecured debt is summarized in Table 4.

Table 4
Payoff structure of unsecured debt.

Defaults: (ωjt < ω̃Gjt) Does not default: (ωjt ≥ ω̃Gjt)

G firm With Prob= ζ, keeps assets Repays debt
and becomes B firm; and keeps profit.
With Prob = 1− ζ, gets nothing.

Lender Gets nothing. Receives repayment.

We discuss why the contracts above correspond to secured and unsecured contracts. We

can interpret the BGG contract as a secured debt contract in which a B firm uses its entire

stock of assets as collateral. Lenders give the firm a menu of options: if the firm borrows

with a higher loan-to-value ratio, it faces a higher contractual interest rate. The firm will

choose amongst these pairs of loan-to-value ratios and contractual rates to maximize its

expected future value.8 In the loan repayment phase, if the borrower fails to repay, lenders

liquidate the collateral which is the remaining value of the firm. In unsecured debt contracts,

the assumption that lenders receive no payment in a default event follows from Azariadis,

Kaas and Wen (2016) and Cui and Kaas (2017). One interpretation is that a defaulting G

firm liquidates its assets and the owner starts a new firm.

Perfectly-competitive investors lend in both secured and unsecured debt markets, and

they break even in every state of the world as in BGG. For each firm with type i and net

6In the data, high credit quality is positively correlated with a firm’s historical productivity. This is
reflected in our model because the precedence of a credit downgrade implies that B firms on average have
lower historical productivity.

7We relax this assumption in Section 8.2.
8Kiyotaki and Moore (1997) is a special case in which the loan-to-value ratio is inelastic.
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worth N i
jt, lenders offer a menu of debt and cutoff values (or contractual interest rates Zi

jt)

which satisfies the lenders’ break-even condition. The lenders’ participation constraint in

the secured debt market (for B firms) is:

RK
t Qt−1K

B
jt−1

[∫
ω̄Bjt

ω̄BjtdFt−1 + (1− µ)

∫ ω̄Bjt

ωdFt−1

]
≥ Rt−1B

B
jt−1. (5)

In this participation constraint, the first integral on the left hand side corresponds to bor-

rowers who experience a shock ωjt ≥ ω̄Bjt and repay their debts. The second integral refers

to borrowers who experience a shock ωjt < ω̄Bjt and default. Therefore, the left hand side is

lenders’ average return. The right hand side is the risk-free return (Rt−1) on loans.

The lenders’ participation constraint in the unsecured debt market (for G firms) is:

RK
t Qt−1K

G
jt−1

(∫
ω̃Gjt

ω̄GjtdFt−1

)
≥ Rt−1B

G
jt−1, (6)

Even although lenders cannot observe which G firms default strategically (i.e. default when

the firm can repay), they take strategic default into account in the break-even condition.

Moreover, we assume that in every state of the world, some G firms repay their debt, and

so lenders always break even. In this paper we do not consider a potential bad equilibrium

in which all G firms default and there is no reputation value of being a G firm.9

We assume that in each period, there is an exogenous probability (1 − θ) that a firm

exits.10 When it exits the remaining wealth is transferred to the households. We denote

the value of a firm with label i ∈ {G,B} and net worth N i
jt as V i

t (N i
jt). A B firm chooses

(KB
jt , ω̄

B
jt+1) to maximize the following value function:

V B
t (NB

jt )

= max
KB
jt,ω̄

B
jt+1

EtΛt,t+1

∫
ω̄Bjt+1

{
θV B

t+1[(ω − ω̄Bjt+1)RK
t+1QtK

B
jt ] + (1− θ)(ω − ω̄Bjt+1)RK

t+1QtK
B
jt

}
dFt.(7)

where Λt,t+1 is the stochastic discount factor. In a given period, if a B firm draws ω > ω̄Bjt+1,

it settles its debt repayment and has (ω − ω̄Bjt+1)RK
t+1QtK

B
jt unit of net worth. If the firm

exits (with probability (1− θ)), the net worth is transferred to households. If the firm does

not exit (with probability θ), it will operate in period t + 1 with its net worth which has a

value of V B
t+1[(ω − ω̄Bjt+1)RK

t+1QtK
B
jt ].

9This equilibrium is analyszed by Cui and Kaas (2017), Azariadis, Kaas and Wen (2016) and Gu, Mat-
tesini, Monnet and Wright (2013).

10Following Carlstrom and Fuerst (1997), BGG and Gertler and Karadi (2011), this assumption prevents
firms from growing out of their financial constraints.
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A G firm chooses (KG
jt , ω̄

G
jt+1, ω̃

G
jt+1) to maximize the following value function:

V G
t (NG

jt ) = max
KG
jt,ω̄

G
jt+1

EtΛt,t+1

∫
max

{
V G,ND
jt+1 , V G,D

jt+1

}
dFt, (8)

where V G,ND
jt+1 is the value of repaying the debt and V G,D

jt+1 is the value of defaulting. Here,

V G,ND
jt+1 is given by:

V G,ND
jt = θV G

t [(ω − ω̄Gjt)RK
t Qt−1K

G
jt−1] + (1− θ)(ω − ω̄Gjt)RK

t Qt−1K
G
jt−1, (9)

where the first term corresponds to the value of the firm if it keeps operating, and the second

term corresponds to remaining assets of an exiting firm. If a firm chooses to default, it pays

a default cost µ, and learns whether it can keep operating (with probability ζ). Hence, V G,D
jt+1

is given by:

V G,D
jt = θζV B

t [(1− µ)ωRK
t Qt−1K

G
jt−1] + (1− θ)ζ(1− µ)ωRK

t Qt−1K
G
jt−1. (10)

To summarize, a B firm maximizes its value (7) subject to the participation constraint

(5) in the secured debt market. A G firm maximizes its value (8) subject to the participation

constraint (6) in the unsecured debt market.

We guess the value functions are given by V i
t (N i

jt) = λitN
i
jt for i ∈ {G,B}, where λGt , λ

B
t

are the marginal values of net worth in a G firm and a B firm respectively. We require that

λGt > λBt > 1 for all t. The first equality ensures that G firms have no incentives to borrow

in the secured debt market, and the second ensures that firms prefer operating until they

quit by default or exit.11

The following proposition states the solution of the optimal financial contracting prob-

lem:12

Proposition 1. Suppose initial monitoring costs κ are such that λG > λB > 1, where

λG, λB are the steady-state values of λGt , λ
B
t respectively.13 The equilibrium dynamics of the

credit contracts in the neighborhood of the deterministic steady state is characterized by the

following features:

11We check that these conditions are satisfied in our numerical exercise.
12All proofs are given in Appendix B.
13To be precise, we require:

1−
[

1− F (ω̄B)− µω̄Bf(ω̄B)

1− F (ω̄B)

]
> κ > 1−

[
1− F (ω̃G)

1− F (ω̃G)− ω̃Gf(ω̃G)

] [
1− F (ω̄B)− µω̄Bf(ω̄B)

1− F (ω̄B)

]
,

where ω̃G, ω̄B are the steady-state values of ω̃Gt , ω̄
B
t respectively, and f(.) is the probability density function

of ωt. If κ is too small λBt may exceed λGt , and if κ is too large, λBt may be smaller than unity.
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1. All i ∈ {G,B} firms choose the same cutoff value ω̄it = ω̄ijt and leverage φit given by:

φBt ≡
QtK

B
jt

(1− κ)NB
jt

, φGt ≡
QtK

G
jt

NG
jt

, (11)

2. A G firm defaults when ωjt < ω̃Gt , where ω̃Gt is given by:

ω̃Gt = ξ−1
t ω̄Gt , (12)

and ξt is defined as:

ξt ≡ 1− ζ(1− µ)
ΩB
t

ΩG
t

≤ 1, (13)

where Ωi
t ≡ θλit + 1− θ for i ∈ {B,G}.

3. The marginal values of net worth for a G firm and a B firm evolve as follows:

λBt = (1− κ)φBt EtΛt,t+1ΩB
t+1R

K
t+1

∫
ω̄Bt+1

(ω − ω̄Bt+1)dFt, (14)

λGt = φGt EtΛt,t+1ΩG
t+1R

K
t+1

[
(1− ξt+1)

∫ ω̃Gt+1

ωdFt +

∫
ω̃Gt+1

(ω − ω̄Gt+1)dFt

]
. (15)

4. The optimal cutoff values satisfy:

λBt =
(1− κ)EtΛt+1ΩB

t+1R
K
t+1[1− F (ω̄Bt+1)]

Et
RKt+1

Rt
[1− F (ω̄Bt+1)− µω̄Bt+1f(ω̄Bt+1)]

, (16)

λGt =
EtΛt+1R

K
t+1ΩG

t+1ξt+1(1− F (ω̃Gt+1))

Et
RKt+1

Rt
ξt+1[1− F (ω̃Gt+1)− ω̃Gt+1f(ω̃Gt+1)]

. (17)

5. The participation constraints hold with equality:

φBt−1 = PCB

(
ω̄Bt ,

RK
t

Rt−1

;σt−1

)
≡

{
1− RK

t

Rt−1

[∫
ω̄Bt

ω̄Bt dFt−1 + (1− µ)

∫ ω̄Bt

ωdFt−1

]}−1

,(18)

φGt−1 = PCG

(
ω̃Gt , ξt,

RK
t

Rt−1

;σt−1

)
≡

[
1− RK

t

Rt−1

(∫
ω̃Gt

ω̄Gt dFt−1

)]−1

. (19)

Equation (12) introduces a default threshold ω̃Gt for G firms. It states that a G firm which

draws ωjt ∈ [ω̄Gt , ω̃
G
t ] defaults strategically. A G firm trades off the benefits of reneging on

its unsecured debt and its reputation costs. In future, any borrowing of secured debt by

this firm is subject to costly initial monitoring κ. This substitution between reputation and

monitoring is similar to Diamond (1991)’s theory of loan demand.
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Equation (13) describes the way this tradeoff evolves over the business cycle. A G

firm’s reputation value is characterized by ξt: if ξt increases, the distance between ω̄Gt and

ω̃Gt shrinks, and the firm is less likely to default strategically. The reputation value ξt

only depends on macroeconomic conditions. In particular, it is an increasing function of

ΩG
t /Ω

B
t ≈ λGt /λ

B
t , which is the ratio of marginal values of G and B firms. When a shock

increases λBt more than λGt , the reputation value of being a G firm is low, ξt falls and more

strategic default arises.

Equations (14) and (15) express the value of G firm and B firms in terms of their future

value. Consider (14) for instance. Conditional on a given shock realization ω, a unit of net

worth in a B firm is leveraged up by (1− κ)φBt times, yields an aggregate return RK
t+1 and

appropriately discounted by Λt,t+1ΩB
t+1, where ΩB

t+1 is a probability weighted average of the

marginal values of net worth to exiting and continuing firms at t + 1. If ω < ω̄Bt+1 the firm

defaults and the borrower’s value is 0. If ω ≥ ω̄Bt+1 the firm receives a share (ω − ω̄Bt+1) of

the revenue. This schedule is represented by the blue solid line in Figure 1. We integrate

with respect to the distribution F (ω) to obtain the unconditional value λBt . The value of a

G firm, (15), can be understood similarly.

Equations (16) and (17) determine the optimal default thresholds for B and G firms,

ω̄Bt+1, ω̃
G
t+1. The following two propositions explain their determinants.

Proposition 2. Up to a first order approximation, the cutoff value for the secured debt

contract, ω̄Bt , satisfies:

Et

(
RK
t+1

Rt

)
= Etρ

B(ω̄Bt+1;σt) ≥ 1, (20)

where the credit demand function ρB(ω̄Bt+1;σt), defined in Appendix B, is increasing in the

cutoff value ω̄Bt+1, and increasing in the cross-sectional dispersion of the idiosyncratic shock

σt. Furthermore,

lim
ω̄Bt+1→0

ρB(ω̄Bt+1;σt) = 1.

This optimality condition for secured contracts states that the cutoff value ω̄Bt+1 is in-

creasing in the external finance premium, defined as Et(R
K
t+1)/Rt. A B firm cares about

its upside profit when it does not default. If the external finance premium is higher, the

firm chooses to borrow more and defaults more often, so ω̄Bt+1 rises. In equilibrium, the

external finance premium is weakly greater than unity because lenders expect resources to

be lost through monitoring, which has to be compensated by the external finance premium.

Moreover, ρBσ > 0 because a more spread-out distribution of idiosyncratic shock means more

expected defaults and a higher premium. When ω̄Bt+1 approaches 0, there is no default and

no monitoring, so ρB = 1.
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Proposition 3. Up to a first order approximation, the cutoff value for the unsecured debt

contract, ω̃Gt , satisfies:

Et

(
RK
t+1

Rt

)
= Etρ

G(ω̃Gt+1, ξt+1;σt) ≥ 1, (21)

where the credit demand function ρG(ω̃Gt+1, ξt+1;σt), defined in Appendix B, is increasing in

the cutoff value ω̃Gt+1, decreasing in ξt+1, and increasing in the cross-sectional dispersion of

the idiosyncratic shock σt. Furthermore,

lim
ω̃Gt+1→0

ρG(ω̃Gt+1, ξt+1;σt) = 1.

A novel feature of the unsecured debt contract is that the default threshold depends

on ξ. The intuition for ρGξ < 0 is as follows. For a given ω̃Gt+1, if ξt+1 is smaller (i.e. G

firms have lower reputation value), ω̄Gt+1 = ξt+1ω̃
G
t+1 is lower. According to Equation (4)

the contractual interest rate ZG
t is lower. From the lenders’ perspective, a G firm’s default

threshold is unchanged, but the contractual interest rate is lower, so lenders cannot break

even with the same contract. To break even, lenders must require a higher external finance

premium. This is why ρGξ < 0.

The following two propositions describe the relative cautiousness of borrowers and lenders

in the two debt markets:

Proposition 4. For any ω̄t > 0, 1 > ξt > µ and σt−1 > 0,

∂ρG(ω̄t, ξt;σt−1)

∂ω̄t
>
∂ρB(ω̄t;σt−1)

∂ω̄t
. (22)

This proposition states that borrowers are more cautious in the unsecured debt market

than in the secured debt market. As shown in Figure 1, borrowers in the secured debt market

care less about downside risks, because when they default their assets are transferred to the

lenders. Consider the following thought experiment. Suppose both secured and unsecured

debt contracts have the same cutoff value ω̄t initially. A marginal increase in the external

finance premium would induce a bigger rise in the cutoff value in the secured debt contract

relative to the cutoff value in the unsecured debt contract. In other words, for a given cutoff

value, the slope of the credit demand function ρB is less steep compared with the slope of

credit demand function ρG. The top panel of Figure 3 plots the credit demand functions for

B firms and G firms using the actual contract calibrated for our model in the steady state,

keeping ξ fixed at its steady-state value. Clearly, ρG is steeper than ρB for any given cutoff

value ω̄.
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Fig. 3. Comparative static analysis of credit demand functions (ρG, ρB), and participation constraints
(PCG, PCB) based on steady-state calibrations. The top panel plots the external finance premium with
respect to cutoff value, and the bottom panel plots the leverage with respect to cutoff value. × denotes
the steady state values of the external finance premium and leverage obtained by benchmark calibration in
Section 5.
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Proposition 5. For any ω̄t > 0, 1 > ξt > µ and σt−1 > 0,

∂PCB
(
ω̄t,

RKt
Rt−1

;σt−1

)
∂ω̄t

>
∂PCG

(
ω̄t,

RKt
Rt−1

, ξt;σt−1

)
∂ω̄t

> 0. (23)

This proposition states that lenders in the unsecured debt market are more cautious than

lenders in the secured debt market. Consider the following thought experiment. Suppose

both debt contracts have the same cutoff value ω̄t initially. If a borrower of unsecured debt

asks for an additional unit of loan, and if it turns out that the borrower defaults, lenders

cannot get anything back. In the secured debt market, however, lenders can retrieve the

remaining value in the firm after monitoring. Therefore, to increase lending by one unit,

lenders need to be compensated by a bigger increase in the cutoff value in the unsecured debt

market. In other words, for a given cutoff value, the slope of the participation constraint is

steeper for B firms than for G firms. The bottom panel of Figure 3 plots the participation

constraints associated with B firms and G firms, with RK/R and ξ fixed at their steady-state

values. For any given cutoff value ω̄, PCB is steeper than PCG.

The following proposition is our first main result:

Proposition 6. The leverage ratio of G firms is lower than the leverage ratio of B firms.

That is φBt > φGt .

The intuition can be illustrated using Figure 3. In the top panel, borrowers in both

secured and unsecured debt contracts face the same external finance premium E(RK
t+1)/Rt,

but since ρG is steeper than ρB (See Proposition 4), borrowers of unsecured debt choose a

lower cutoff value ω̃Gt+1 than the cutoff value for secured debt, ω̄Bt+1, which means that they

default less often. In the bottom panel, as the participation constraint for B firms is steeper

than the participation constraint for G firms (See Proposition 5), and ω̄Bt+1 > ω̃Gt+1, we must

have φBt > φGt . Our result that G firms have lower leverage than B firms is consistent with

stylized fact 2.

Moreover, our model is consistent with stylized fact 3, that is unsecured debt has a higher

correlation with output than unsecured debt. This is the second main result of this paper.

We provide the intuitions for this in the rest of this section and support the intuition with

numerical simulations in the following sections.

Consider a negative TFP shock. In a standard one-sector financial accelerator model

with secured debt as in BGG, the external finance premium rises in equilibrium. This is

shown in the top-left panel in Figure 4. As a result, the cutoff value of the financial contract

increases. The lower-left panel shows the participation constraint of this contract, written

as the leverage ratio as a function of the cutoff value of the contract. A rise in the external

18



finance premium increases lenders’ revenue, so the participation constraint shifts up, which,

together with the rise in the cutoff value, leads to a sharp increase in the leverage ratio.

In our model, the rise in the external finance premium affects secured and unsecured

contracts differently. In Figure 4, the left (right) panel represents the secured (unsecured)

debt market. Propositions 4 and 5 state that ρi and PCi have different slopes in the two

markets i ∈ {B,G}. In particular, when the external finance premium rises, the fact that

ρB is steeper than ρG means that ω̃Gt+1 shifts to the right by less than ω̄Bt+1. The fact that

PCB is steeper than PCG implies that φGt goes up by less than φBt .

Moreover, there is an effect arising from strategic defaults. A rise in the external finance

premium increases both λGt and λBt . Moreover, as the leverage ratio in B firms rises more

than the leverage ratio of G firms, λBt increases more than λGt , and (13) implies that ξt

falls and there is an increase in strategic defaults. The top-right panel shows that a fall

in ξt further shifts the ρG curve up, leading to a smaller increase in the default threshold

ω̃Gt . Furthermore, more strategic defaults shift the participation constraint down, as in the

bottom-right panel. As a result, the leverage ratio of the G firms increases by less than

the leverage ratio of B firms. This is crucial in understanding why unsecured debt is more

procyclical than secured debt in the general equilibrium.

4. The rest of the model

This section embeds our financial contract into a standard real business cycle framework.

Besides the firm sector described above, there are three other types of agents, namely ho-

mogeneous households, investors and capital producers, which is standard in the literature.

4.1. Households

Infinite-lived representative households derive utility from consumption and disutility

from supplying labor. The preferences of the representative household are given by:

E0

∞∑
t=0

βt
[
ln(Ct − hCt−1)− χ L

1+ϕ
t

1 + ϕ

]
, (24)

where the parameter χ is the weight on labor disutility, h < 1 is a parameter which captures

habit persistence in consumption and ϕ is the inverse of Frisch labor elasticity.

In each period, a representative household supplies labor and receives wage income,

makes deposits and consumes. Rt is the risk-free interest rate. ΠK
t denotes profits from

capital producing firms. The transfer term trt includes startup funds paid to new firms and

revenues remitted from old firms. To sum up, a representative household faces the following
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Fig. 4. This figure illustrates the relationships among cutoff values, the external finance premium, and
leverage.

.
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budget constraint:

wtLt +Rt−1Dt−1 = Ct +Dt + trt. (25)

The consumption Euler equation and labor supply conditions are:

1 = RtEt(Λt,t+1), (26)

wt = χLϕt U
−1
Ct . (27)

where the stochastic discount factor is given by Λt−1,t = βUCt/UCt−1, and UCt = (Ct −
hCt−1)−1 − βhEt(Ct+1 − hCt)−1.

4.2. Investors

Investors collect deposits from households and lend to firms. They observe the credit

quality of each firm and issue unsecured debt to G firms and secured debt to B firms.

Investors require a risk-free return Rt in every state of the world for each of these loans.

Investors do not play a meaningful role in the model other than making sure households

hold a diversified loan portfolio across firms.

4.3. Capital goods producers

A representative capital goods producer buys previously installed capital and combines

it with investment good It to produce new capital. Newly produced capital is sold back to

the firms within the same period. Production of new capital is subject to convex investment

adjustment costs Adjt = 0.5ΨI (It/It−1 − 1)2. The evolution of aggregate capital Kt is given

by:

Kt = (1− δ)Kt−1 + (1− Adjt)It. (28)

Capital goods producers maximize discounted sum of expected future profits, Et
∑∞

s=0 Λt,t+sΠ
K
t+s,

where ΠK
t = Qt[Kt− (1− δ)Kt−1]− It. The first order condition for the optimal investment

choice is:

1 = Qt

[
1− Adjt −ΨI It

It−1

(
It
It−1

− 1

)]
+ Et

[
Λt,t+1Qt+1ΨI

(
It+1

It

)2(
It+1

It
− 1

)]
.(29)

4.4. Aggregation and accumulation of net worth

Since each type of firms has the same capital to labor ratio and leverage ratio, we

only need to keep track of sector-level quantities. For X ∈ {Y,K,L,N,B}, we define

X i
t ≡

∫
i
X i
jtdj, where i ∈ {G,B}, and we also define economy-wide variables Xt ≡ XG

t +XB
t .
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Since the leverage ratio is the same for each type of firm, we have:

NG
t φ

G
t = QtK

G
t , (30)

(1− κ)NB
t φ

B
t = QtK

B
t . (31)

It is helpful to define the average leverage ratio of the economy as φt ≡ QtKt/Nt.

We write down the evolution of net worth for G and B firms. We assume that in each

period, new firms enter to keep the number of firms of each credit rating in the economy

constant. We assume households transfer to a new firm a small fraction τ of the net worth

of the average firm with the same credit rating. These initial funds are one-time lump-sum

transfer from households. G firms’ net worth evolves as follow:

NG
t = θ

∫
ω̃Gt

(ω − ω̄Gt )RK
t Qt−1K

G
t−1dFt−1 + τNG

t−1, (32)

where the first term represents the firms which are G firms in period t − 1 and remain G

firms in period t. The second term denotes the transfer to new entrants.

Net worth of B firms evolves as follow:

NB
t = θ

∫ ω̃Gt

ζ(1− µ)ωRK
t Qt−1K

G
t−1dFt−1 + θ

∫
ω̄Bt

(ω − ω̄Bt )RK
t Qt−1K

B
t−1dFt−1 + τNB

t−1,(33)

The first term represents G firms who default in the last period and therefore becomes B

firms in period t. The second term refers to B firms in period t− 1 who remain B firms in

period t. The last term is the transfer to new entrants.

The market clearing condition is given by:

Yt = Ct + It + [µ+ (1− µ)(1− ζ)]

∫ ω̃Gt

ωdFt−1R
K
t Qt−1K

G
t−1

+µ

∫ ω̄Bt

ωdFt−1R
K
t Qt−1K

B
t−1 + κNB

t . (34)

The expenditure side consists of consumption, investment, resources lost in defaulting G

and B firms and initial monitoring costs for B firms.

4.5. Shocks

There are two shocks in the economy, namely a TFP shock and a shock to σt, the

cross-sectional variance of the idiosyncratic shock. Christiano, Motto and Rostagno (2014)

interprets σt as a risk shock and shows that it is important in explaining the US business
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cycle. We assume that these shocks following exogenous AR(1) processes as follows:

lnAt = ρA lnAt−1 + εAt, εAt ∼ N(0, s2
A) (35)

lnσt = (1− ρσ) ln s+ ρσ lnσt−1 + εσt, εσt ∼ N(0, s2
σ) (36)

The innovations of all shocks are assumed to be i.i.d, uncorrelated over time and with each

other.

This completes the description of the model. Appendix A shows the equations of the full

system.

5. Calibration

In the following we solve and simulate the model numerically by log-linearizing the system

around its non-stochastic steady state. This section discusses our calibration.

Each period is a year. The parameters in production and household sectors are relatively

standard in the macroeconomic literature and are given in Table 5. We set β = 0.96, which

corresponds to around 4% steady-state interest rate. We set ΨL = 5, so households devote

41 percent of their time to work. The parameter that governs the Frisch elasticity of labor

supply is set to χ = 1. For production, the capital share is set to α = 0.33, and the

depreciation rate to δ = 0.08. The curvature of investment adjustment costs ΨI is set to 1

and the consumption habit parameter h is set to 0.4. These parameter values are within an

acceptable range in the literature.

Our calibration strategy for financial parameters is as follows. We set the survival rate

of firms to θ = 0.87 so an average firm exits in 7.7 years. We set the default costs to 0.2,

following the estimation by Davydenko, Strebulaev and Zhao (2012). The default costs

is between 0.25 used in Carlstrom and Fuerst (1997) and 0.12 in BGG. We calibrate the

remaining parameters to hit four targets. First, the external finance premium RK/R is 2%,

based on Gilchrist and Zakrajsek (2012). Second, we target an unsecured debt to total debt

ratio BG/B = 0.75, to match the Compustat data in Figure 2. Third, we target a steady-

state leverage ratio of B firms to φB = 2.4. Fourth, we target a steady-state leverage ratio of

G firms to φG = 1.5. These leverage ratios are close to the leverage ratios of firms with credit

quality ‘AA and above’ and ‘CC or below’ in our dataset and are close to what is found in

Rauh and Sufi (2010). They imply the aggregate leverage of the firm sector is 1.59, which

is in between 2 used in BGG and 1.43 found in De Fiore and Uhlig (2011) for the period

1999-2007. These conditions pin down {σ, ζ, κ, τ}. We find that the initial monitoring costs

for secured debt are κ = 0.017, which are large enough so that λG = 1.28 > 1.23 = λB in

23



Table 5
Calibrated parameters.

Parameter Value Meaning
β 0.96 Subjective discount factor
α 0.33 Capital share in production
δ 0.08 Capital depreciation rate

ΨL 5 Labor disutility
ϕ 1 Inverse of Frisch labor elasticity
ΨI 1 Convexity of investment adjustment costs
h 0.4 Consumption habit
θ 0.87 Firm survival probability
κ 0.017 Initial monitoring cost for secured debt
µ 0.2 Default costs
ζ 0.388 Debt restructuring success rate
σ̄ 0.257 Std. dev of idiosyncratic shock
τ 0.068 Firm initial transfer
ρA 0.56 Persistence of TFP shock
ρσ 0.85 Persistence of financial shock
sA 0.023 Std. dev of TFP shock innovation
sσ 0.026 Std. dev of financial shock innovation

the steady state, but are not too large so that λBt > 1 around the steady state.14

The shock parameters are calibrated as follows. We calibrate the persistence and stan-

dard deviation of the cross-sectional volatility shock using annual industry-level TFP data

in 1983-2011 by the National Bureau of Economic Research (NBER) and the Center for

Economic Studies (CES). We linearly detrend each industry-level TFP series and compute

the cross-sectional variance at each point in time. We fit an AR(1) process and obtain

ρσ = 0.85, sσ = 0.026. This procedure follows Nuno and Thomas (2017). For the TFP

shock we use the annual TFP series in 1983-2011 constructed by the CSIP at the Federal

Reserve Bank of San Francisco. The log-TFP series is HP-filtered (smoothing parameter

=100) fitted with an AR(1) process. We get ρA = 0.56 and sA = 0.023.

6. Model results

6.1. Impulse responses

Figures 5 and 6 show the response of macroeconomic and financial variables to a one

standard deviation fall in TFP and increase in cross-sectional volatility respectively. All

14Appendix C shows the details of our calibration.
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variables are presented as percentage deviations from steady-state values. For sectoral vari-

ables, blue solid lines denote G firms which borrow in the unsecured debt market and red

dashed lines denote B firms which borrow in the secured debt market.

In Figure 5, a bad TFP shock reduces the realized return on capital. This reduces

the net worth of all firms in the economy and limits their ability to borrow in subsequent

periods. Investment demand drops, the price of capital Q falls and the external finance

premium Et(R
K
t+1)/Rt rises. A fall in the price of capital further reduces the realized return

on capital, increasing the break-even contractual interest rate, so the cutoff values rise. This

aggravates the initial fall in net worth of the firms through the financial accelerator effect

discussed in BGG. This effect leads to a large and persistent fall in output and investment.

We are interested the quantity of unsecured and secured debt in the economy in response

to shocks. We can rewrite BG
t , B

B
t in terms of their net worth and leverage ratios as follows:

BG
t = (φGt − 1)NG

t , BB
t = (1− κ)(φBt − 1)NB

t .

These equations state that the evolution of unsecured and secured debt is determined by

net worth and the leverage ratios of the respective firms. Figure 5 shows that, as a negative

TFP shock hits, NB falls by more than 7% whereas NG falls by around 5%. This is because

B firms borrow with a higher steady-state leverage ratio than G firms, and their net worth

is more volatile. On the other hand, the leverage ratio of B firms rises by about 3.5%, which

is more than three times the rise in leverage ratio of G firms (0.8%). The mechanism behind

the differentiated response in the leverage ratios is explained in Section 3 (See Figure 4): as

borrowers and lenders in the unsecured debt market are more cautious, and the reputation

value of a G firm falls in bad times, ω̃Gt+1 shifts to the right by less than ω̄Bt+1 (from period

1 onwards), and the leverage ratio of G firms rises less than the leverage ratio of B firms.

A fall in net worth combined with muted response in the leverage ratio of G firms mean

that unsecured debt falls strongly initially and is highly procyclical. By contrast, a sharp

increase in the leverage ratio of B firms mitigates the fall in the quantity of secured debt in

the initial periods.

Figure 6 shows the response to a rise in the cross-sectional volatility of firms’ productivity.

This shock increases the default probability of the firms, thus requiring higher cutoff values

for the lenders to break even, which reduces net worth and the price of capital, triggering

the financial accelerator mechanism.

Again, the volatility shock affects the quantity of unsecured and secured borrowing

through net worth and leverage ratios. A volatility shock is mean-preserving, so its effect on

the price of capital and the net worth of the firms is smaller than a TFP shock. The shock

affects the leverage ratios through multiple channels. First, a volatility shock increases the
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external finance premium Et(R
K
t+1)/Rt. The secured and unsecured debt markets respond

to this differently because the credit demand functions (ρG, ρB) and the participation con-

straints (PCG, PCB) in the two markets have different slopes in a way described by Figure

4. Second, a volatility shock shifts up both ρG and ρB because ∂ρG

∂σ
> 0, ∂ρ

B

∂σ
> 0. Intuitively,

when there is more cross-sectional risk, firms borrow more cautiously and default less for

a given external finance premium. In equilibrium, the upward shift of ρG and ρB reduces

the initial jump of the default thresholds ω̃Gt+1 and ω̄Bt+1. Third, a volatility shock shifts the

participation constraints PCG, PCB downwards because lenders break even by lending at

lower leverage ratios. So the leverage ratios φGt , φ
B
t jump up by less initially. Figure 6 shows

that, in equilibrium, the leverage ratio in B firms increases whereas the leverage ratio in G

firms actually falls on impact. As a result, unsecured debt falls by about 1% and secured

debt rises by more than 1% initially.

6.2. Business Cycle Moments

Table 6 presents the model’s performance along with the empirical moments. Panel A

shows the standard deviation of output produced by the benchmark model, while Panel B

and C report the relative standard deviation and correlation of other variables with output.

The most important result that emanates from Table 6 is that the model is able to reproduce

the cyclicality of secured and unsecured debt. Unsecured debt is highly procyclical with

Corr(BG, Y ) = 0.64, whereas secured debt is only slightly procyclical Corr(BB, Y ) = 0.09.

They are close to the corresponding empirical moments: 0.48(0.50) for unsecured debt and

0.06(0.15) for secured debt in US rated (rated and non-rated) firms. Simultaneously, the

model performs well in terms of matching the other moments characterizing the business

cycle. In particular, it is able to generate output and investment volatility similar to that

observed in the actual data. As in the data, consumption in the model is less volatile than

output, although a bit less than its empirical counterpart. The procyclicality of consumption

in the model is also consistent with the data. Lastly, the model is able to reproduce the

correlations of total debt with output.

The model performs slightly worse in terms of the comovement of investment and output.

In the model, the correlation is as high as 0.96 , compared to 0.87 in the data. Finally, the

model underestimates the volatility of secured, unsecured, and total debt compared to the

data. Although the model does not perform well in this dimension, a standard BGG model

is not able to generate large fluctuations in debt either.15 Rannenberg (2016) compare

moments generated by different types of financial frictions models and show that a Gertler

and Karadi (2011) type model with financial frictions in the banking sector can better

15Using our calibrated parameters, a standard BGG model yields a standard deviation of total debt of
1.79 times to standard deviation of output, which is still far smaller than the US data.
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Table 6
Moments.

U.S. Data Benchmark Model
Panel A: Standard Deviation
Output (Y ) 1.81 1.79

Panel B: Standard Deviation/ std.(Y)
Consumption (C) 0.90 0.71
Investment (I) 3.18 2.73
Unsecured Debt (BG) 7.68 1.30
Secured Debt (BB) 5.60 1.19
Total Debt (B) 4.39 1.10

Panel C: Correlation with Output
Consumption (C) 0.94 0.97
Investment (I) 0.87 0.96
Unsecured Debt (BG) 0.48 0.64
Secured Debt (BB) 0.06 0.09
Total Debt (B) 0.53 0.59

Moments of U.S. are computed by using annual data from 1981 to 2016. The numbers
from the model are theoretical moments based on the benchmark calibration. Panel
A reports the standard deviation of output. Panel B reports the relative standard
deviations with respect to output. Panel C reports the contemporaneous correlations
with output.

match the standard deviation of loans relative to GDP than a BGG-type model. However,

our model is able to capture the relative size of the volatility of secured, unsecured, and

total debt, with unsecured debt the most volatile series and total debt the least.

7. Macroeconomic implications

What are the macroeconomic implications of using a model with both secured and un-

secured debt? To answer this question, we compare our model with a standard one-sector

BGG model and a real business cycle model without financial frictions. We describe the

details of the one-sector BGG system and the RBC model in the Appendix.

To make the comparison fair, we use the same parameters as in our benchmark model

with one exception. We assume in the one-sector BGG model that the initial monitoring

cost is given by κ̃ = κN̄B/N̄ , where N̄B are N̄ are the steady-state value of NB
t and Nt in

the benchmark model. This means that the initial monitoring costs are now shared evenly

by every firm.

Figure 7 shows the impulse responses to a negative TFP shock. Blue solid lines corre-

spond to our benchmark model, red dashed lines to the one-sector BGG model, and black
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Table 7
Steady state values.

SS Values Benchmark Model One-Sector BGG model
K 1.44 1.54
N 0.91 0.68
B 0.54 0.86
φ 1.59 2.27
Y 0.62 0.64

Steady state values of key variables based on benchmark calibration
for benchmark model and standard BGG model respectively.

dash-dotted lines to the real business cycle model without financial frictions. The one-sector

BGG model has the biggest amplification effects. For instance, the one-sector BGG model

amplifies the fall in investment by 56% relative to the RBC model one year after the shock;

whereas our benchmark model amplifies the fall only by 40%. Moreover, the initial falls in

aggregate net worth and debt in the BGG model are 44% and 47% larger than our model

respectively. The bottom line is that our model with heterogeneous debt has a financial

accelerator effect, but the effect is smaller than in a conventional BGG model.

There are two key reasons behind the dampening effect of the financial accelerator.

First, the one-sector BGG model has a higher steady-state leverage, given the same set

of parameters. Table 7 reports key steady-state values in the two models and shows that

the leverage in the one-sector BGG model is K/N = 2.27, much higher than 1.59 in the

benchmark model. This is because cautious borrowers and lenders in the unsecured debt

market choose a lower leverage. When the economy has a bigger fraction of unsecured

lending the aggregate leverage ratio is lower.

Second, the presence of unsecured debt dampens the dynamics of the system because

unsecured debt borrowers default less often than secured debt borrowers. When an economy

has a larger proportion of unsecured debt in the steady state, a negative shock to the

aggregate economy induces a smaller increase in default. This means that firms are able

to retain a bigger fraction of their revenues, so the fall in net worth in the firm sector is

mitigated, and firm leverage is less volatile. It requires a shorter time for firm net worth to

recover, resulting in a less deep and persistent recession.

8. Model extensions

In this section we discuss four model extensions. The purpose is to show that our key

mechanism holds under a more general environment. We outline each of the extensions

below and report our key moments (i.e. the correlations of secured and unsecured debt with
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output) in Table 8.16

8.1. Credit upgrade

In the benchmark model, firms which are downgraded to B firms will not become G

firms in any future periods. In reality some firms do regain high credit ratings and favorable

terms with creditors. We allow for this in the current extension. Following Cui and Kaas

(2017), we assume there is an exogenous probability γup that a B firm becomes a G firm

in a given period. We also assume an exogenous probability γdown that a G firm becomes a

B firm in the next period. To implement this, the future values of marginal net worth are

modified to:

ΩG
t = θ[(1− γdown)λGt + γdownλBt ] + 1− θ, (37)

ΩB
t = θ[(1− γup)λBt + γupλGt ] + 1− θ. (38)

The rest of the credit contract equations remain unchanged. For small values of γup and

γdown, all of our analytical results remain valid. To simulate this model, we set the credit

upgrade parameter to γup = 0.1 to corresponds to a firm staying at a B rating for 10 years on

average.17 Exogenous downgrade is set to γdown = 0.015 which has little effect on dynamics.

8.2. Positive recovery ratio in unsecured debt

We assume in the benchmark model that creditors of unsecured debt do not have access

to the firm’s asset when it defaults. Here we relax this assumption and assume that if a

unsecured debt borrower defaults, a fraction µ is lost. Unsecured debt lenders get a fraction

% < 1− µ of the remaining value in the firm. The borrower has a probability ζ of retaining

the remaining (1 − µ − %) fraction of net worth and becomes a B firm. With probability

(1− ζ) the borrower gets nothing.18

Data on recovery rates is available in Mora (2012). The recovery rate measures the

extent to which the creditor recovers the principal and accrued interest due on a defaulted

debt. According to Moody’s Default Risk Service (DRS) data 1970-2008, the mean recovery

rate is 39%, and the mode is smaller than 10% (These figures haven not accounted for

the discounting of delayed repayments due to litigation or other reasons). However, for

senior unsecured debt, the median recovery rate is only 26%. We thus set % = 0.3 in our

simulations.

16Detailed descriptions of each of these extensions are discussed in an additional appendix available from
the authors.

17This calibration corresponds to the bankruptcy flag for sole proprietors filing for bankruptcy under
Chapter 7 of the US Bankruptcy Code.

18The benchmark model is a special case in which % = 0.
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Table 8
Model extensions.

Correlations with output Unsecured Debt Secured Debt
Data Rated firms 0.48 0.06

All firms 0.50 0.15
Model Benchmark 0.64 0.09

Credit upgrade 0.64 0.13
Positive recovery ratio 0.66 0.18
Different avg. productivity 0.61 0.18
Mixed debt 0.76 0.26

Note: This table reports the contemporaneous correlations with output.

8.3. Different average productivity

The benchmark model does not allow for differences in aggregate productivity. As a

result, all firms face the same expected future return on capital EtR
K
t+1. In this extension we

relax this assumption. Specifically, in each period a fraction π of firms have high productivity

AH , and the remaining (1 − π) fraction has low productivity AL such that AH > AL. For

simplicity, productivity in each period is uncorrelated. Firms produce with the following

Cobb-Douglas production function:

Y m,i
jt = AtA

m(ωjtK
m,i
jt−1)α(Lm,ijt )1−α, (39)

where At denotes the TFP of the economy, Am where m ∈ {H,L} is the firm’s productivity

type such that AH > AL, and ωjt is an idiosyncratic shock to a firms’ capital quality. Am

has an i.i.d two point distribution with Pr(AH) = π and mean 1. Its realization is observed

by lenders when the loan contracts are decided.

Now, the average return on capital of the firm whose current productivity is Am is given

by:

Rm,K
t ≡ rm,Kt + (1− δ)Qt

Qt−1

. (40)

where rm,Kt ≡ αAtA
m
(

(1−α)AtAm

wt

) 1−α
α

. Clearly RH,K
t > RL,K

t .

For each average productivity {AH , AL}, there are G and B firms. More importantly,

all of our analytical results hold for G and B firms with the same average productivity.

But firms with average productivity AH face higher expected return and external finance

premium than firms with low average productivity AL.

In the simulation exercise, we set the fraction of productive firms to be π = 20%, which

is common in the literature. We choose AH = (1.15)α, and AL = (1− πAH)/(1− π) so that

the unconditional productivity is 1.
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8.4. Mixed debt in low-credit-quality firms

In the data, low credit quality firms usually have a multi-tier debt structure, borrowing

both secured and unsecured debt. In this extension, we assume that B firms borrow a

fixed fraction (1 − ν) of unsecured debt and the remaining fraction ν of secured debt. For

simplicity, assume that a firm either repays or defaults all its debt obligations. In the case

of default, the secured debt lender is entitled to ν(1 − µ)ωjt+1R
K
t+1QtK

B
jt fraction of assets

after monitoring. The default B firm undergoes debt restructuring. With probability ζ,

debt restructuring is successful and the firm retains (1 − µ)(1 − ν)ωjt+1R
K
t+1QtK

B
jt , but it

losses its B label and is excluded from any loans in future. With probability (1 − ζ), debt

restructuring is unsuccessful, the firm shuts down and has nothing left.

We show that it is optimal for a B firm to choose to default when ω < ω̃Bt , where

ω̃Bt = (ξBt )−1ω̄Bt , and ξBt ≤ 1 is the reputation value of being a B firm. Furthermore, the

value of a firm is still given by V i
t (N i

jt) = λitN
i
jt for i ∈ {G,B,X}, where λGt > λBt > λXt > 1

for all t, and ‘X’ is the label for a firm which is excluded from the financial market.

We use the same calibration strategy for financial parameters, targeting a 75% unsecured

debt to total debt ratio [BG + (1− ν)BB]/(BG +BB), and we assume B firms use ν = 80%

secured debt.

9. Conclusion

In this paper, we study the important features of firms’ debt structure. We find that firms

with a high-credit-rating rely almost exclusively on unsecured debt, while those with a low-

credit-quality use a multi-tiered debt structure often consisting of a large share of secured

debt. We show that debt heterogeneity is a first-order aspect of firm capital structure, and

is essential to the understanding of debt dynamics and cyclical fluctuations.

We embed secured and unsecured debt in a dynamic stochastic general equilibrium model

featuring costly state verification. In our model, unsecured debt borrowers may default and

still keep their assets, which allows them to strategically default on their borrowing and

run the risk of losing their high credit rating. Under this contractual arrangement, market

participants of unsecured debt are relatively cautious, relative to participants in the secured

debt market. This accounts for low leverage ratios in high-credit-rating firms. This effect

implies that lenders cut lending disproportionately on unsecured debt in a recession, thus

leading to a higher correlation between output and unsecured debt than for secured debt.

A calibrated version of our economy matches well with the observed volatility and cor-

relations of output, firm credit, and investment. We find that the amplification effect of an

economic shock in our model is smaller than that generated by a model featuring secured
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debt only. Our results show that too much investment volatility would be incorrectly pre-

dicted by frictions in the secured firm debt market – a standard result in the literature. We

conclude that unsecured debt and its dynamics are important to a better understanding of

fluctuations in business cycles.
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Appendix A. Full system

The full system has a macroeconomic part and a credit contract part. The macroeco-

nomic part is given by:

Λt−1,t = β
Ct−1

Ct
(A.1)

1 = RtEt(Λt,t+1) (A.2)

wt = χLϕt U
−1
Ct (A.3)

wtLt = (1− α)Yt (A.4)

Yt = AtK
α
t−1L

1−α
t (A.5)

Kt = (1− δ)Kt−1 +

[
1− ψI

2

(
It
It−1

− 1

)2
]
It (A.6)

Yt = Ct + It + [µ+ (1− µ)(1− ζ)]G(ω̃Gt )RK
t Qt−1K

G
t−1 + µG(ω̄Bt )RK

t Qt−1K
B
t−1 + κNB

t(A.7)

1 = Qt

[
1− ψI

2

(
It
It−1

− 1

)2

− ψI It
It−1

(
It
It−1

− 1

)]

+Et

[
Λt,t+1Qt+1ψ

I

(
It+1

It

)2(
It+1

It
− 1

)]
(A.8)

RK
t =

α Yt
Kt−1

+ (1− δ)Qt

Qt−1

(A.9)

36



The credit contract part:

λGt = φGt EtΛt,t+1ΩG
t+1R

K
t+1

{
1− ξt+1[G(ω̃Gt+1) + ω̃Gt+1(1− F (ω̃Gt+1))]

}
(A.10)

1− 1

φGt−1

=
RK
t

Rt−1

ξtω̃
G
t [1− F (ω̃Gt )] (A.11)

λGt =
EtΛt+1R

K
t+1ΩG

t+1ξt+1(1− F (ω̃Gt+1))

Et
RKt+1

Rt
ξt+1[1− F (ω̃Gt+1)− ω̃Gt+1f(ω̃Gt+1)]

(A.12)

ω̄Gt = ξtω̃
G
t (A.13)

ξt = 1− ζ(1− µ)(θλBt + 1− θ)
ΩG
t

(A.14)

λBt = (1− κ)φBt EtΛt,t+1ΩB
t+1R

K
t+1[1−G(ω̄Bt+1)− ω̄Bt+1(1− F (ω̄Bt+1))] (A.15)

1− 1

φBt−1

=
RK
t

Rt−1

{
ω̄Bt [1− F (ω̄Bt )] + (1− µ)G(ω̄Bt )

}
(A.16)

λBt =
(1− κ)EtΛt+1ΩB

t+1R
K
t+1[1− F (ω̄Bt+1)]

Et
RKt+1

Rt
[1− F (ω̄Bt+1)− µω̄Bt+1f(ω̄Bt+1)]

(A.17)

Kt = KG
t +KB

t (A.18)

QtK
G
t = NG

t φ
G
t (A.19)

QtK
B
t = (1− κ)NB

t φ
B
t (A.20)

NG
t =

(
θRK

t φ
G
t−1{1−G(ω̃Gt )− ω̄Gt [1− F (ω̃Gt )]}+ τ

)
NG
t−1 (A.21)

NB
t = ζ(1− µ)G(ω̃Gt )θRK

t φ
G
t−1N

G
t−1

+(1− κ)θ{1−G(ω̄Bt )− ω̄Bt [1− F (ω̄Bt )]}RK
t φ

B
t−1N

B
t−1 + τNB

t−1 (A.22)

ΩB
t = θλBt + 1− θ (A.23)

ΩG
t = θλGt + 1− θ (A.24)

where f(ω̄t;σt−1) ≡ ∂
∂ω̄t
F (ω̄t;σt−1) is the probability density function of ω̄t, andG(ω̄t;σt−1) ≡∫ ω̄t ωdF (ω, σt−1). The above 24 equations solve the following 24 variables

{Λt−1,t, Ct, wt, Lt, Yt, Kt, It, Qt, R
K
t , Rt, λ

G
t , φ

G
t , ω̃

G
t , ω̄

G
t , ξt, N

G
t , K

G
t ,Ω

G
t , λ

B
t , φ

B
t , ω̄

B
t , N

B
t , K

B
t ,Ω

B
t }.

Appendix A.1. BGG system

This appendix presents the BGG system. The macroeconomic part is identical to our

benchmark model, except that the goods market clearing condition is now given by:

Yt = Ct + It + µG(ω̄t)R
K
t Qt−1Kt−1 + κ̃Nt (A.25)
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The credit contract part is:

λt = (1− κ̃)φtEtΛt,t+1Ωt+1R
K
t+1[1−G(ω̄t+1)− ω̄t+1(1− F (ω̄t+1))] (A.26)

1− 1

φt−1

=
RK
t

Rt−1

{ω̄t[1− F (ω̄t)] + (1− µ)G(ω̄t)} (A.27)

λt =
(1− κ̃)EtΛt+1Ωt+1R

K
t+1[1− F (ω̄t+1)]

Et
RKt+1

Rt
[1− F (ω̄t+1)− µω̄t+1f(ω̄t+1)]

(A.28)

QtKt = (1− κ̃)Ntφt (A.29)

Nt = (1− κ̃)θ{1−G(ω̄t)− ω̄t[1− F (ω̄t)]}RK
t φt−1Nt−1 + τNt−1 (A.30)

Ωt = θλt + 1− θ (A.31)

The 15-equation system solves the following 15 variables:

{Λt−1,t, Ct, wt, Lt, Yt, Kt, It, Qt, R
K
t , Rt, λt, φt, ω̄t, Nt,Ωt}.

Appendix A.2. The simple RBC system

The simple RBC system has a macroeconomic system similar to our benchmark model,

except that the goods market clearing condition is now given by:

Yt = Ct + It, (A.32)

and the return on capital is equal to the risk-free rate:

1 = Et

[
Λt,t+1

αYt+1

Kt
+ (1− δ)Qt+1

Qt

]
. (A.33)

The system solves the following 9 variables:

{Λt−1,t, Ct, wt, Lt, Yt, Kt, It, Qt, Rt}.

Appendix B. Proofs

Proof of proposition 1

With perfect competition, the participation constraints hold with equality. We begin by

solving the problem for the B firms. We substitute the guess into the objective function.

The objective function can be rewritten as:

V B
t (NB

jt ) = maxEtΛt,t+1ΩB
t+1R

K
t+1QtK

B
jt

∫
ω̄Bjt+1

(ω − ω̄Bjt+1)dFt, (B.1)
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where ΩB
t ≡ θλBt + 1− θ.

We write down the Lagrangian as

V B
t (NB

jt ) = maxEtΛt,t+1ΩB
t+1R

K
t+1QtK

B
jt

∫
ω̄Bjt+1

(ω − ω̄Bjt+1)dFt

+lmB
jt

[
RK
t+1

Rt

QtK
B
jt

(1− κ)

(∫
ω̄Bjt+1

ω̄Bjt+1dFt + (1− µ)

∫ ω̄Bjt+1

ωdFt

)
−

QtK
B
jt

(1− κ)
+NB

jt

]
,(B.2)

where lmB
jt is the Lagrange multiplier. The envelope condition says that λBt = lmB

jt. The

first order condition for KB
jt is:

KB
jt : 0 = EtΛt,t+1ΩB

t+1R
K
t+1

(∫
ω̄Bjt+1

(ω − ω̄Bjt+1)dFt

)

+λBt

[
RK
t+1

Rt

1

(1− κ)

(∫
ω̄Bjt+1

ω̄Bjt+1dFt + (1− µ)

∫ ω̄Bjt+1

ωdFt

)
− 1

(1− κ)

]
.(B.3)

In this equation, ω̄Bjt is the only firm-specific variable. This implies that every firm chooses

the same cutoff value ω̄Bt . The participation constraint implies every firm chooses the same

leverage ratio:

RK
t+1

Rt

(∫
ω̄Bt+1

ω̄Bt+1dFt + (1− µ)

∫ ω̄Bt+1

ωdFt

)
= 1− 1

φBt
, (B.4)

where φBt ≡ QtK
B
jt/[(1− κ)NB

jt ]. Rearranging the first order condition for KB
jt , we obtain:

λBt = (1− κ)φBt EtΛt,t+1ΩB
t+1R

K
t+1

∫
ω̄Bt+1

(ω − ω̄Bt+1)dFt. (B.5)

Using the results that V B
t (NB

jt ) = λBt N
B
jt and φBt = QtK

B
jt/[(1 − κ)NB

jt ], the objective

function can be expressed as:

V B
t (NB

jt ) = EtΛt,t+1ΩB
t+1R

K
t+1QtK

B
jt

∫
ω̄Bt+1

(ω − ω̄Bt+1)dFt

λBt = (1− κ)φBt EtΛt,t+1ΩB
t+1R

K
t+1

∫
ω̄Bt+1

(ω − ω̄Bt+1)dFt. (B.6)

This is the same as the first order condition for KB
jt . Our guess is verified.

39



The first order condition for ω̄Bt+1 is given by:

λBt =
(1− κ)EtΛt+1ΩB

t+1R
K
t+1[1− F (ω̄Bt+1)]

Et
RKt+1

Rt
[1− F (ω̄Bt+1)− µω̄Bt+1f(ω̄Bt+1)]

. (B.7)

In the steady state

λB

θλB + 1− θ
=

(1− κ)[1− F (ω̄B)]

[1− F (ω̄B)− µω̄Bf(ω̄B)]
. (B.8)

We need λB > 1 in the steady state, which requires that

(1− κ)(1− F (ω̄B))

(1− F (ω̄B)− µω̄Bf(ω̄B))
> 1.

We turn to the problem of G firms. We substitute V G
t (NG

jt ) = λGt N
G
jt , V

B
t (NB

jt ) = λBt N
B
jt

into the objective function. The maximization problem in the integral becomes:

max{ΩG
t+1(ω − ω̄Gjt+1), ζ(1− µ)ΩB

t+1ω}, (B.9)

where Ωi
t ≡ θλit + 1 − θ, for i ∈ {B,G}. This means that default is chosen when ω < ω̃Gjt,

where ω̃Gjt ∈ [ω̄Gjt,∞) (because we rule out the case that all G firms default) and is given by:

ω̃Gt = ξ−1
t ω̄Gt , ξt ≡ 1− ζ(1− µ)ΩB

t

ΩG
t

. (B.10)

These mean that we can rewrite the objective function as:

V G
t (NG

jt ) = maxEtΛt,t+1ΩG
t+1R

K
t+1QtK

G
jt

(
(1− ξt+1)

∫ ω̃Gjt+1

ωdFt +

∫
ω̃Gjt+1

(ω − ω̄Gjt+1)dFt

)
,(B.11)

and the participation constraint as:

RK
t+1QtK

G
jt

(∫
ω̃Gjt+1

ω̄Gjt+1dFt

)
= Rt(QtK

G
jt −NG

jt ). (B.12)

We write down the Lagrangian as

V G
t (NG

jt ) = maxEtΛt,t+1ΩG
t+1R

K
t+1QtK

G
jt

(
(1− ξt+1)

∫ ω̃Gjt+1

ωdFt +

∫
ω̃Gjt+1

(ω − ω̄Gjt+1)dFt

)

+lmG
jt

[
RK
t+1

Rt

QtK
G
jt

(∫
ω̃Gjt+1

ω̄Gjt+1dFt

)
−QtK

G
jt +NG

jt

]
, (B.13)
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where lmG
jt is the Lagrange multiplier. The envelope conditions says that λGt = lmG

jt. The

first order condition for KG
jt is:

KG
jt : 0 = EtΛt,t+1ΩG

t+1R
K
t+1

(
(1− ξt+1)

∫ ω̃Gjt+1

ωdFt +

∫
ω̃Gjt+1

(ω − ω̄Gjt+1)dFt

)

+λGt

[
RK
t+1

Rt

(∫
ω̃Gjt+1

ω̄Gjt+1dFt

)
− 1

]
. (B.14)

In this equation, ω̄Gjt is the only firm-specific variable. This implies that every firm chooses

the same cutoff value ω̄Gt . Then the participation constraint implies every firm chooses the

same leverage:

1− 1

φGt
=
RK
t+1

Rt

(∫
ω̃Gt+1

ω̄Gt+1dFt

)
, (B.15)

where φGt ≡ QtK
G
jt/N

G
jt . Rearranging the first order condition for KG

jt , we obtain:

λGt = φGt EtΛt,t+1ΩG
t+1R

K
t+1

(
(1− ξt+1)

∫ ω̃Gt+1

ωdFt +

∫
ω̃Gt+1

(ω − ω̄Gt+1)dFt

)
. (B.16)

We can substitute these results back to the objective function to verify the guess V G
t (NG

jt ) =

λGt N
G
jt is indeed correct:

V G
t (NG

jt ) = EtΛt,t+1ΩG
t+1R

K
t+1QtK

G
jt

[
(1− ξt+1)

∫ ω̃Gt+1

ωdFt +

∫
ω̃Gt+1

(ω − ω̄Gt+1)dFt

]

λGt = φGt EtΛt,t+1ΩG
t+1R

K
t+1

[
(1− ξt+1)

∫ ω̃Gt+1

ωdFt +

∫
ω̃Gt+1

(ω − ω̄Gt+1)dFt

]
. (B.17)

This is the same as the first order condition for KG
jt . Our guess is verified.

The first order condition for ω̃Gt+1 is given by:

λGt =
EtΛt+1R

K
t+1ΩG

t+1ξt+1[1− F (ω̃Gt+1)]

Et
RKt+1

Rt
ξt+1[1− F (ω̃Gt+1)− ω̃Gt+1f(ω̃Gt+1)]

. (B.18)

In the steady state, this implies:

λG

θλG + 1− θ
=

1− F (ω̃G)

1− F (ω̃G)− ω̃Gf(ω̃G)
> 1. (B.19)
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We derive the condition under which λG > λB. Using (B.8) and (B.19), we show that:

λG > λB

λG

θλG + 1− θ
>

λB

θλB + 1− θ
1− F (ω̃G)

1− F (ω̃G)− ω̃Gf(ω̃G)
> (1− κ)

[
1− F (ω̄B)

1− F (ω̄B)− µω̄Bf(ω̄B)

]
κ > 1−

[
1− F (ω̃G)

1− F (ω̃G)− ω̃Gf(ω̃G)

]
/

[
1− F (ω̄B)

1− F (ω̄B)− µω̄Bf(ω̄B)

]
(B.20)

Proof of propositions 2, 3

We prove some important properties of ρB(ω̄B;σ) and ρG(ω̃G, ξ;σ). Define:

G(ω̄t;σt−1) ≡
∫ ω̄t

ωdF (ω, σt−1),

Γ(ω̄t;σt−1) ≡ G(ω̄t;σt−1) + ω̄[1− F (ω̄t;σt−1)].

The function G denotes the mean of the idiosyncratic shock conditional on the shock below

a given threshold ω̄. The function Γ adds the function G and a constant return ω̄ if the

realization of idiosyncratic shock is above the threshold. This function is the share of revenue

transferred to lenders (before monitoring) in the secured debt contract. We denote Gω,Γω

the first derivatives of G and Γ with respect to ω̄, and denote Gσ,Γσ the first derivatives of

G and Γ with respect to σ, and so on. In the following, we suppress the arguments of the

functions when this does not cause any confusions.

To derive the function ρB, we first note that the evolution of λBt , the optimal threshold

ω̄Bt+1 and the participation constraint can be written as:

λBt = (1− κ)φBt EtΛt,t+1ΩB
t+1R

K
t+1[1− Γ(ω̄Bt+1)], (B.21)

λBt =
(1− κ)EtΛt+1ΩB

t+1R
K
t+1Γω(ω̄Bt )

Et
RKt+1

Rt
[Γω(ω̄Bt )− µGω(ω̄Bt )]

, (B.22)

1− 1

φBt−1

=
RK
t

Rt−1

[Γ(ω̄Bt )− µG(ω̄Bt )]. (B.23)

We roll the participation constraint one period forward, rearrange these three equations to

eliminate the leverage ratio and the marginal value λBt to get, up to a first order approxi-

mation:

Et

(
RK
t+1

Rt

)
= Etρ

B(ω̄Bt+1;σt), (B.24)
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where

ρB(ω̄Bt+1) ≡
Γω(ω̄Bt+1)

[1− Γ(ω̄Bt+1)][Γω(ω̄Bt+1)− µGω(ω̄Bt+1)] + [Γ(ω̄Bt+1)− µG(ω̄Bt+1)]Γω(ω̄Bt+1)
. (B.25)

Following the same procedures, we can show that for the unsecured debt contract, up to

a first-order approximation,

Et

(
RK
t+1

Rt

)
= Etρ

G(ω̃Gt+1, ξt+1;σt), (B.26)

where

ρG(ω̃Gt+1, ξt+1) ≡
Γω(ω̃Gt+1)

[1− ξΓ(ω̃Gt+1)][Γω(ω̃Gt+1)−Gω(ω̃Gt+1)] + ξ[Γ(ω̃Gt+1)−G(ω̃Gt+1)]Γω(ω̃Gt+1)
.

(B.27)

We now analyze the properties of ρB, ρG. First, it is straightforward to show that:

F (ω̄;σ) = Φ

(
log ω̄ + 0.5σ2

σ

)
> 0, G(ω̄;σ) = Φ

(
log ω̄ − 0.5σ2

σ

)
> 0.

where we define Φ(.), φ(.) as the cdf and pdf of a standard normal distribution.

The first derivatives are:

Fω =
1

σω̄
φ

(
log ω̄ + 0.5σ2

σ

)
> 0,

Fσ = − 1

σ
φ

(
log ω̄ + 0.5σ2

σ

)(
log ω̄ − 0.5σ2

σ

)
> 0,

Gω =
1

σω̄
φ

(
log ω̄ − 0.5σ2

σ

)
> 0,

Gσ = − 1

σ
φ

(
log ω̄ − 0.5σ2

σ

)(
log ω̄ + 0.5σ2

σ

)
> 0,

Γω = 1− F > 0,

Γσ = Gσ − ω̄Fσ = −φ
(

log ω̄ − 0.5σ2

σ

)
< 0,

where
(

log ω̄−0.5σ2

σ

)
<
(

log ω̄+0.5σ2

σ

)
< 0 because the default probability is small in economi-
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cally relevant cases.19

The following second derivatives are useful:

Gωω = − 1

σω̄2
φ

(
log ω̄ − 0.5σ2

σ

)
− 1

σ2ω̄2
φ

(
log ω̄ − 0.5σ2

σ

)(
log ω̄ − 0.5σ2

σ

)
= − 1

σω̄2
φ

(
log ω̄ − 0.5σ2

σ

)(
log ω̄ + 0.5σ2

σ

)
> 0,

Gωσ = − 1

σ2ω̄
φ

(
log ω̄ − 0.5σ2

σ

)
− 1

σ2ω̄
φ′
(

log ω̄ − 0.5σ2

σ

)(
log ω̄ + 0.5σ2

σ

)
=

1

σ2ω̄
φ

(
log ω̄ − 0.5σ2

σ

)[(
log ω̄ − 0.5σ2

σ

)(
log ω̄ + 0.5σ2

σ

)
− 1

]
> 0,

Γωω = −Fω < 0,

Γωσ = −Fσ < 0.

we have used φ′(x) = −xφ(x).

19To derive the expression for Γσ we note that:

ω̄Fσ = − ω̄
σ

(
log ω̄ − 0.5σ2

σ

)
φ

(
log ω̄ + 0.5σ2

σ

)
= − ω̄

σ

(
log ω̄ − 0.5σ2

σ

)
1√
2π

exp

{
−1

2

[(log ω̄ − 0.5σ2) + σ2]2

σ2

}
= − ω̄

σ

(
log ω̄ − 0.5σ2

σ

)
1√
2π

exp

{
−1

2

(log ω̄ − 0.5σ2)2 + 2(log ω̄ − 0.5σ2)σ2 + σ4

σ2

}
= − ω̄

σ

(
log ω̄ − 0.5σ2

σ

)
1√
2π

exp

{
−1

2

(log ω̄ − 0.5σ2)2

σ2

}
exp(− log ω̄)

= − 1

σ

(
log ω̄ − 0.5σ2

σ

)
φ

(
log ω̄ − 0.5σ2

σ

)
.

Therefore,

Γσ = Gσ − ω̄Fσ

= − 1

σ
φ

(
log ω̄ − 0.5σ2

σ

)(
log ω̄ + 0.5σ2

σ

)
+

1

σ

(
log ω̄ − 0.5σ2

σ

)
φ

(
log ω̄ − 0.5σ2

σ

)
= − 1

σ
φ

(
log ω̄ − 0.5σ2

σ

)[(
log ω̄ + 0.5σ2

σ

)
−
(

log ω̄ − 0.5σ2

σ

)]
= −φ

(
log ω̄ − 0.5σ2

σ

)
< 0.
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Using the above relations it is easy to show that ρG, ρB ≥ 1, and

ρBω =
Γωω(1− Γ)(Γω − µGω)− Γω(1− Γ)(Γωω − µGωω)

[(1− Γ)(Γω − µGω) + (Γ− µG)Γω]2

=
µ(1− Γ)

[(1− Γ)(Γω − µGω) + (Γ− µG)Γω]2
(ΓωGωω − ΓωωGω) > 0. (B.28)

ρGω =
(1− ξΓ)

[(1− ξΓ)(Γω −Gω) + ξ(Γ−G)Γω]2
(ΓωGωω − ΓωωGω) > 0. (B.29)

ρBσ =
(1− Γ)[(Γω − µGω)Γωσ − Γω(Γωσ − µGωσ)] + Γω[Γσ(Γω − µGω)− Γω(Γσ − µGσ)]

[(1− Γ)(Γω − µGω) + (Γ− µG)Γω]2

=
(1− Γ)µ[ΓωGωσ −GωΓωσ] + µΓω[ΓωGσ − ΓσGω]

[(1− Γ)(Γω − µGω) + (Γ− µG)Γω]2
> 0. (B.30)

ρGσ =
(1− ξΓ)[ΓωGωσ −GωΓωσ] + ξΓω[ΓωGσ − ΓσGω]

[(1− ξΓ)(Γω −Gω) + ξ(Γ−G)Γω]2
> 0. (B.31)

Next, we show that ρGξ < 0. Clearly,

ρGξ = − Γω
[(1− ξΓ)(Γω −Gω) + ξ(Γ−G)Γω]2

(ΓGω −GΓω). (B.32)

Notice that

ΓGω −GΓω = [G+ ω̄(1− F )]Gω −G(1− F )

= GGω + (1− F )(ω̄Gω −G).

The first term is clearly positive. We show that the second term is also positive by studying

the function Gω:

Gω =
1

σω̃G
φ

(
log ω̃G − 0.5σ2

σ

)
=

1

σ
φ

(
log ω̃G + 0.5σ2

σ

)
.

This means that limω̃G→0Gω(ω̃G) = 0. Furthermore, Gωω > 0 for ω ∈ [0, ω̃G]. These mean

that

ω̃GGω(ω̃G) >

∫ ω̃G

0

Gωdω = G(ω̃G)− lim
ω̃G→0

G(ω̃G) = G(ω̃G).

Therefore, ω̃GGω > G, so ΓGω −GΓω > 0, which means that ρGξ < 0.

Finally, since limω̄→0Gω(ω̄) = 0 and limω̄→0G(ω̄) = 0, we substitute these results into

ρG, ρB to get limω̄→0 ρ
G(ω̄) = limω̄→0 ρ

B(ω̄) = 1.

Proof of proposition 4

Consider ρBω , ρ
G
ω in (B.28) and (B.29). We evaluate these functions at a given ω̄ > 0. Clearly,

the numerator of ρBω is smaller than the numerator of ρGω . Furthermore, the denominator of
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ρBω is larger than the denominator of ρGω . To see this, notice that

[(1− Γ)(Γω − µGω) + (Γ− µG)Γω]− [(1− ξΓ)(Γω −Gω) + ξ(Γ−G)Γω]

= Gω[1− µ+ Γ(µ− ξ)] + (ξ − µ)GΓω

> Gω[Γ(1− µ) + Γ(µ− ξ)] + (ξ − µ)GΓω

> GωΓ(1− ξ)

> 0,

where the second last inequality follows from the fact that ξ > 1 − (1 − µ)ΩB/ΩG > µ.

Therefore, ∂ρG(ω̄t,ξt;σt−1)
∂ω̄t

> ∂ρB(ω̄t;σt−1)
∂ω̄t

.

Proof of proposition 5

We consider the two participation constraints:

1− 1

φBt−1

=
RK
t

Rt−1

[Γ(ω̄Bt )− µG(ω̄Bt )], (B.33)

1− 1

φGt−1

=
RK
t

Rt−1

ξt[Γ(ω̃Gt )−G(ω̃Gt )]. (B.34)

When ω̄t = ω̄Bt = ω̃Gt ,

1− 1

φBt−1

=
RK
t

Rt−1

[Γ(ω̄t)− µG(ω̄t)] >
RK
t

Rt−1

ξt[Γ(ω̄t)−G(ω̄t)] = 1− 1

φGt−1

. (B.35)

Therefore, φBt−1 > φGt−1.

Furthermore,

∂
(

1− 1
φBt−1

)
∂ω̄t

=
RK
t

Rt−1

[Γω(ω̄t)− µGω(ω̄t)] >
RK
t

Rt−1

ξt[Γω(ω̄t)−Gω(ω̄t)] =
∂
(

1− 1
φGt−1

)
∂ω̄t

Therefore,

∂φBt−1

∂ω̄t
>

(
φBt−1

φGt−1

)2
∂φGt−1

∂ω̄t
>
∂φGt−1

∂ω̄t
. (B.36)

Finally we prove that the two participation constraints are upward-sloping. We consider

the function Ψ(ω̄) ≡ Γ(ω̄) − G(ω̄) and show that Ψω > 0 for a relevant range of ω. To see
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this we write:

Gω(ω̄) = ω̄f(ω̄) = ω̄h(ω̄)(1− F (ω̄)) > 0,

Γω(ω̄) = Gω(ω̄) + (1− F (ω̄))− ω̄f(ω̄) = 1− F (ω̄) > 0,

Ψω(ω̄) = Γω(ω̄)−Gω(ω̄) = (1− F (ω̄))(1− ω̄h(ω̄)),

where h(ω̄) = f(ω̄)/(1−F (ω̄)) is the hazard rate. For the log-normal distribution, ω̄h(ω̄) = 0

when ω̄ = 0, limω̄→∞ ω̄h(ω̄) = ∞, and ω̄h(ω̄) is increasing in ω̄. Hence, there exists an ω̄∗

such that Ψω(ω̄) > 0 for ω̄ < ω̄∗ and Ψω(ω̄) < 0 for ω̄ > ω̄∗. For any ω̄1 such that ω̄1 > ω̄∗,

there exist a ω̄2 such that ω̄2 < ω̄∗ < ω̄1 and Ψ(ω̄2) = Ψ(ω̄1). Since the smaller ω̄2 implies a

smaller bankruptcy rate for the borrower than ω̄1 while keeping the lenders’ share of profit

unchanged, any ω̄1 > ω̄∗ will never be chosen. Hence, ω̄ has an interior solution and in the

optimal contract Ψω(ω̄) > 0. This means that:

∂PCB
(
ω̄t,

RKt
Rt−1

)
∂ω̄t

>
∂PCG

(
ω̄t, ξt,

RKt
Rt−1

)
∂ω̄t

> 0. (B.37)

Proof of proposition 6

We know from Propositions 2 and 3 that limω̄t→0 ρ
B(ω̄t) = limω̄t→0 ρ

G(ω̄t, ξt) = 1, and

ρB, ρG are increasing in ω̄t. Moreover, Proposition 4 show that ρGω (ω̄t, ξt) > ρBω (ω̄t). These

mean that, for any external finance premium such that Et(R
K
t+1)/Rt = Etρ

G(ω̃Gt+1, ξt+1) =

Etρ
B(ω̄Bt+1), we must have ω̃Gt+1 < ω̄Bt+1.

Then

φGt = PCG

(
ω̃Gt+1, ξt+1,

RK
t+1

Rt

)
< PCB

(
ω̃Gt+1,

RK
t+1

Rt

)
< PCB

(
ω̄Bt+1,

RK
t+1

Rt

)
= φBt , (B.38)

where the first inequality is proved in Proposition 5, and the second inequality makes use of

the fact that PCB is increasing in ω̄ and that ω̃Gt+1 < ω̄Bt+1.
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Appendix C. Details of calibration

We discuss our calibration strategy of the benchmark model. We first use the following

equations for the secured debt contracts:

λB = (1− κ)φBβΩBRK [1−G(ω̄B)− ω̄B(1− F (ω̄B))] (C.1)

1− 1

φB
= βRK

{
ω̄B[1− F (ω̄B)] + (1− µ)G(ω̄B)

}
(C.2)

λB =
(1− κ)ΩB[1− F (ω̄B)]

[1− F (ω̄B)− µω̄Bf(ω̄B)]
(C.3)

ΩB = θλB + 1− θ (C.4)

We use the steady-state conditions for the unsecured debt contracts:

λG = φGβΩGRK
{

1− ξ[G(ω̃G) + ω̃G(1− F (ω̃G))]
}

(C.5)

1− 1

φG
= βRKξω̃G[1− F (ω̃G)] (C.6)

λG =
ΩGξ(1− F (ω̃G))

ξ[1− F (ω̃G)− ω̃Gf(ω̃G)]
(C.7)

ξ = 1− ζ(1− µ)(θλB + 1− θ)
ΩG

(C.8)

ΩG = θλG + 1− θ (C.9)

Furthermore, the steady-state ratio of secured and unsecured debt is given by:

BG

BB
=

KG −NG

KB − (1− κ)NB
=

KG

NG − 1
KB

NB
NB

NG − (1− κ)N
B

NG

=
NG

NB
× φG − 1

(φB − 1)(1− κ)
(C.10)

where the evolution of net worth of B firms in the steady state gives the following relation:

NG

NB
=

1− τ − (1− κ)θ{1−G(ω̄B)− ω̄B[1− F (ω̄B)]}RKφB

ζ(1− µ)G(ω̃G)θRKφG
.

The evolution of net worth of G firms in the steady state gives the following relation:

τ = 1− θRKφG{1−G(ω̃G)− ξω̃G[1− F (ω̃G)]} (C.11)

The four steady-state conditions pin down RK/R, φB, φG, BG/BB. The above eleven

equations solve for the remaining steady-state values of {ω̄B, ω̃G, λB, λG,ΩB,ΩG, ξ} and the

parameters {σ, κ, ζ, τ}.
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