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1 Introduction

It is a well-established fact that firms of different sizes and ages experience persistently

different growth paths along their life cycle. Newly established businesses typically start

out small relative to their more mature competitors, and this gap takes time to close (e.g.

Dunne et al. (1988), Caves (1998), Cabral and Mata (2003)). A large theoretical literature,

inspired by the seminal work of Jovanovic (1982) and Hopenhayn (1992), has traditionally

attributed this evidence to a process of selection on the basis of productivity differences

among firms, and has analyzed how these may in turn shape firm and industry dynamics in

various meaningful ways.

Recently, this view has been challenged by a growing literature arguing that, because

empirical patterns of firm growth are usually based on revenue data (from which one can-

not disentangle output prices from quantities), the productivity-based interpretation of firm

heterogeneity may confound selection on technological productivity with selection on prof-

itability (e.g. Foster et al. (2008)). As more disaggregated data have become available over

subsequent years, new empirical evidence has shown that large cross-sectional differences in

revenue across firms remain after controlling for heterogeneity in productivity, suggesting

that differences in firm performance are stemming, to a great extent, from differences in

firms’ idiosyncratic demand. Further, the evidence suggests that this demand-side channel

of variation is persistent. Thus, firm investment in demand accumulation gives rise to differ-

ences in the life-cycle of businesses of similar productivities.1 Yet, little is known about the

aggregate implications of this micro-level phenomenon.

In this paper, we formalize these empirical findings by developing an equilibrium theory

of firm dynamics in product markets in which there is a meaningful role for a demand

accumulation process at the firm level. We interpret this process as the formation of a

customer base. In order to understand the role that this type of heterogeneity has for

macroeconomic dynamics, we enrich the model with aggregate and idiosyncratic supply and

demand shocks. We then use an estimated version of the model to explore the dynamics of

prices and markups in response to aggregate supply and demand shocks, with an emphasis

on how the responses are heterogeneous in the cross section of firms.

We propose a directed search model of a frictional product market in which a fixed mass of

ex-ante identical buyers must search for sellers of a certain homogenous product. Sellers differ

in their idiosyncratic productivity, and they post, and commit to, price contracts designed

to attract new potential customers. Within a productivity class, sellers are ex-post hetero-

geneous in the number of buyers that they sell the product to, since their pricing decisions

1 Hottman et al. (2016) show, for U.S. retail, that most variation in the firm size distribution is attributable
to variation in demand components, while Foster et al. (2008, 2016) show, for U.S. commodity-like markets,
that the (technological) productivity advantage of entrants is small and it dissipates over the first few years
of operation, while idiosyncratic demand accounts for the bulk of the observed heterogeneity. Similar studies
for other countries include Carlsson et al. (2017) (Sweden), Pozzi and Schivardi (2016) (Italy), Hong (2017)
(France), Kaas and Kimasa (2018) (Germany), and Kugler and Verhoogen (2012) (Colombia).
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endogenously determine the rate at which demand accumulates. Outside of the market, idle

sellers must pay a fixed entry (or “market penetration”) cost to reach their first customer.

Unmatched buyers, on the one hand, trade off the ex-post gains from matching to the ex-ante

probability of joining the customer base, as they internalize the endogenous probability that

each supplier’s size changes through the posted contract. On the other hand, new and old

customers remain loyal to the firm (even though there is no commitment on their part) be-

cause the promised continuation payoffs provide compensation for the costly opportunity of

searching for other suppliers. Hence, mutually valuable seller-customer relationships develop.

In equilibrium, sellers strike a balance between instantaneous revenues (via high prices)

and future market shares (via high promises). The way this trade-off is resolved depends

on the size of the seller’s customer base. In equilibrium, the sign of the correlation between

prices and size depends on the degree of frictions in the market.2 When costs to market

penetration are relatively high, small sellers optimally decide to promise high continuation

utilities in order to generate a high probability of quickly expanding their base and raise

enough resources to afford the entry cost. Because of product market congestion effects, the

customer capital accumulation process takes time. As firms mature, they lower their future

promises and raise the price as they increasingly prefer to exploit their customer base at the

expense of lowering the speed at which their market share accumulates. As a result, their

markups tend to increase as they grow in size, and the firm’s rate of growth slows down.

When entry costs are relatively low, however, the firm might instead be willing to lower its

prices as it grows, because it has a weaker preference for rapid growth at the early stages of

its life cycle. In either scenario, the endogenous customer acquisition process is counteracted

by per-customer separation and exit shocks, meaning that firms converge on average to a

stationary size. Therefore, on top of price dispersion, the model generates a well-defined and

right-skewed firm distribution.

To solve for the optimal pricing contract, we show that the model can be solved recur-

sively and that the policy that maximizes the seller’s expected value is equivalent to a joint

surplus maximization program. This equivalence is important because it reduces the dimen-

sionality of the state space, and even leads to some analytical tractability in the equilibrium

characterization. To obtain computational tractability, we exploit that the equilibrium is

block-recursive, a common property of models of directed search (e.g. Shi (2009), Menzio

and Shi (2010, 2011)). This property implies that, in order to evaluate payoffs, agents need

not keep track of the firm distribution across aggregate states and over time. Thus, the firm

distribution can be derived independently of the optimal contracting problem, and transi-

tional dynamics can be computed without the need for approximation methods. Further, we

show that a Markov perfect equilibrium is constrained-efficient. This allows us to interpret

2 In this sense, our model does not take a stance on the active empirical debate regarding the dynamics of
firm-level prices, where the literature has found mixed evidence. Foster et al. (2008, 2016) and Piveteau (2017)
claim that prices are increasing in the firm’s tenure in the market, while Berman et al. (2017) find that they
are slightly decreasing. Fitzgerald et al. (2017) find no dynamics of prices, and attribute growth in quantities
to advertising and marketing activities.
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the model as a theory of efficient markups, in which sellers’ pricing decisions lead to a socially

optimal allocation of customers across product markets.

In the second part of the paper, we quantify our model in order to study the aggregate

implications of firm-level customer accumulation, particularly regarding the cyclicality of ag-

gregate markups. To estimate the model, we use highly disaggregated product-level pricing

data for the U.S. retail sector (2001-2007), and calibrate the model to moments of the distri-

bution of relative prices and sales. Using the estimated model, we then analyze the response

of the economy to both aggregate demand and aggregate supply shocks.

In this exercise, we find both level and distributional effects. First, we show that the price

pass-through of aggregate temporary supply shocks (e.g. marginal costs) is incomplete: in

the wake of an adverse shock, firms choose to front-load their contracts by charging slightly

higher prices today and lowering the utility promised to their customers in the future. At the

heart of this result is the observation that, when hit by the shock, firms choose to trade-off

immediate losses to future market shares, which they achieve by inter-temporally transferring

the burden of shocks onto their buyers. Since the price level reacts less than one for one to

the increase in marginal costs, the markup is procyclical. In addition, we describe the effects

of aggregate demand shocks on firm pricing. Shocks that lower the marginal propensity

to consume by buyers generate a bust in demand and lower prices instantaneously. Since

the shock mean-reverts, firms depress their promises on impact but increase prices in the

transition. Overall, the markup response in this case is also procyclical. Thus, the model

provides a micro-founded explanation for procyclical price-cost markups in response to both

aggregate supply and demand shocks. This is important because not only there is mounting

evidence that markups are not countercyclical in the data (e.g. Nekarda and Ramey (2013)),

but also because this observation is famously at odds with most modern New Keynesian

models, particularly regarding demand shocks.

In our model, there are also important distributional changes during the transition after

shocks. Through a decrease in the continuation promise of firms, both negative supply

and negative demand shocks lead to a decrease in the number of new matches, and firms

temporarily shrink in size. This implies that the pass-through is less incomplete for larger

firms, as the markup response is stronger at the lower end of the size distribution. This is

because (i) along the extensive margin, there is a left-ward shift in the size distribution, and

(ii) along the intensive margin, a small firm’s pricing policy is relatively more sensitive to

size changes, for these firms are more eager to grow. Moreover, small firms also experience a

more persistent response, because during the transition the fraction of low-price, small-size

firms relatively increases and takes time to adjust back.

Our paper is related to a literature where customer capital is built into macroeconomic

models of firm pricing. Among early studies, Phelps and Winter (1970), Bils (1989), and

Rotemberg and Woodford (1991, 1999), analyzed pricing behavior under customer retention

concerns.3 While the literature has traditionally resorted to reduced-form formulations for

3 In these papers, firms face an exogenous law of motion for the customer base. A number of papers have
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customer capital formation, we offer a micro-foundation whereby it is the seller’s commitment

which gives rise to long-lasting relationships.

A contribution of our work is that we study the implications that customer-seller re-

lationships have on firm dynamics in the context of an equilibrium model with aggregate

shocks. In various contexts, previous studies have introduced a role for firm intangibles into

models of firm and industry dynamics.4 The effects of intangibles on macroeconomic aggre-

gates are well-understood, from labor wedges (Gourio and Rudanko (2014a)) and aggregate

productivity (McGrattan and Prescott (2014), McGrattan (2017)), to household behavior

(Hall (2008)) and the evolution of industries (Dinlersoz and Yorukoglu (2012), Perla (2017)).

Within this literature, the paper most related to ours is Gourio and Rudanko (2014b). Dif-

ferent from their paper, we analyze firm growth and customer dynamics, and study pricing

behavior when price discrimination is not possible. Moreover, our model incorporates aggre-

gate shocks, and aims to explain the dynamics of the distribution of prices and markups.5

Kaas and Kimasa (2018) enrich the Gourio and Rudanko (2014b) framework to study the

joint dynamics of prices, output, and employment in the context of frictional labor markets.

Menzio and Trachter (2018) and Kaplan et al. (2018) show that price dispersion can emerge

from buyer heterogeneity in situations in which sellers can price-discriminate. In our model,

in contrast, buyers are identical and it is ex-post differences between firms which give rise

to different price levels. While a similar argument is made in Burdett and Coles (1997) and

Menzio (2007), these papers do not discuss the implications of customer capital accumulation

for the evolution of the firm size distribution or for aggregate dynamics. Luttmer (2006) and

Fishman and Rob (2003) discuss the implications for the firm size distribution, but in neither

of those papers is there a meaningful role for prices. Finally, Paciello et al. (2017) focus on

how idiosyncratic productivity levels affect the pricing decisions of firms with customer accu-

mulation concerns, whereas we aim to understand heterogeneities among sellers of the same

productivity, as motivated by the empirical evidence documented by Foster et al. (2008) and

others.6

Various papers have related empirically demand fundamentals to the determination of

prices at the firm level. Peters (2016) and Kugler and Verhoogen (2012) find a positive

correlation between output prices and plant size for Indonesian and Colombian firms, re-

spectively, while Carlsson et al. (2017) find, using Swedish microdata, that a substantial

further suggested reasons why customers may choose to lock into their suppliers in the first place, such as
switching costs (Klemperer (1987, 1995) and Kleshchelski and Vincent (2009)) or good-specific habits (Ravn
et al. (2006), Nakamura and Steinsson (2011), and Gilchrist et al. (2017)).
4 Firm intangibles are a substantial share of firms’ expenditures, and in the U.S. as much as 7.7% of GDP is

devoted to marketing (e.g. Arkolakis (2010)).
5 In more recent work, Rudanko (2017) also studies the role of pricing for firm growth under different market

structures and pricing protocols. Unlike us, she does not focus on price and markup cyclicality in response to
aggregate shocks, or the distributional consequences of these shocks.
6 Unlike Paciello et al. (2017), we do not need to assume that the growth rate of firms is independent of the

size of the customer base. That firm growth is inherently a function of the firm’s current size is a key aspect
and innovation of our theory.
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component of output price variation remains unexplained after accounting for productivity

differences. DeLoecker and Eeckhout (2017) have found that smaller firms set lower markups

relative to competitors within their own industry, and DeLoecker (2011), DeLoecker and

Warzynski (2012), and DeLoecker et al. (2016) perform similar analyses in the context of

exporting firms for different countries, concluding that markups are important contributors

to differences in revenue productivity.

Finally, our paper is related to search-and-matching models with large firms. We embed

directed search (e.g. Moen (1997)) into a model of firm dynamics in the spirit of Elsby and

Michaels (2013) or Kaas and Kircher (2015). Particularly, we combine two technical insights

from this literature. First, we exploit the property of block recursivity, which allows for a

tractable characterization of the firm distribution and its dynamics. Secondly, we make use of

dynamic long-term contracts (e.g. Moscarini and Postel-Vinay (2013), Schaal (2017)), which

reduce the dimensionality of the state space by allowing us to condense the full forward-

looking pricing problem into an amenable recursive form.

2 Model

2.1 Environment

Time is continuous, infinite, and indexed by t ∈ R+. The aggregate state of the economy

is indexed by a time-varying random variable ϕ taking values in a discrete and finite support

Φ ≡ {ϕ < · · · < ϕ}, with cardinality kϕ ≡ |Φ| ≥ 2. The aggregate state is the source of

exogenous aggregate demand and/or supply fluctuations. We assume ϕ follows a homoge-

nous continuous-time Markov chain with generator matrix Λϕ ≡
[
λϕ(ϕ′|ϕ)

]
, where λϕ(ϕ′|ϕ)

denotes the intensity rate of a ϕ-to-ϕ′ transition.7

The economy is populated by a mass-one continuum of risk-neutral, infinitely-lived, ex-

ante identical buyers, and a continuum of risk-neutral firms (sometimes referred to as sellers).

The total mass of buyers is exogenous and normalized to unity, but the composition of buyers

across aggregate states and between types is endogenous. The total measure of firms is

endogenous. Agents discount future payoffs with a common and exogenous rate, r > 0.

There is a single homogenous, indivisible, and perishable good in the economy. Buyers

and sellers must participate in a search-and-matching market in order to engage in trade

because the product market is frictional: searchers cannot coordinate into finding a match

with certainty at any given instant. The product market frictions are meant to capture

congestion effects in product markets with customer anonymity. One interpretation is that

there exist informational asymmetries regarding product characteristics, or some aspects of

7 For all ϕ ∈ Φ, the following properties hold: λϕ(ϕ|ϕ) ≤ 0, λϕ(ϕ′|ϕ) ≥ 0 for any ϕ′ 6= ϕ, and
∑
ϕ′ λϕ(ϕ′|ϕ) =

0. These properties are definitional of continuous-time Markov processes (e.g. Norris (1997), Chapters 2 and
3). Additionally,

∑
ϕ′ λϕ(ϕ′|ϕ) < +∞, ∀ϕ (i.e. the economy always spends a non-zero measure of time in any

given state, when visited).
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supply that are unknown to the potential customer (e.g. the exact location of seller-price

pairs). Another interpretation is that sellers may face inventory or capacity constraints, and

are unable to simultaneously serve a large amount of buyers (as in Burdett et al. (2001)).

These demand considerations lead businesses to invest in reputation-building in order to

overcome those frictions.8

Buyers value the consumption of the good by the same fixed utility flow, v > 0. At any

instant in time, a buyer is said to be active if she is matched with a firm and is consuming

the good, and inactive if she is unmatched and searching for a seller at a cost, c. These

parameters possibly depend on the aggregate state of nature, ϕ. Since v and c relate directly

to buyers’ preferences, this state-dependence incorporates the possibility of aggregate and

exogenous demand fluctuations into the model.9 We also assume no buyer is ever allowed to

borrow against its future income.

Sellers belong to one of two groups: incumbent (or active) sellers, and potential entrant

(or inactive) sellers. At any given time t, a typical incumbent seller has a customer base

of nt ∈ N ≡ {1, 2, 3, . . . } customers, which we subsequently call the size of the seller. Each

seller is also characterized by the realization of an idiosyncratic productivity level z, taking

values on a discrete and finite support Z ≡ {z < · · · < z} of cardinality kz ≡ |Z| ≥ 2.

Like the aggregate state, the idiosyncratic state follows a continuous-time Markov chain with

generator matrix Λz ≡
[
λz(z

′|z)
]
, where λz(z

′|z) denotes the transition rate from z to z′.10

The realization of the idiosyncratic state is observable and public information.

An incumbent seller’s output is constrained by the size of its customer base. Since the

good is indivisible, and because there is no benefit in leaving customers unserved, the number

of units sold by the seller equals the number of customers in the base, with each customer

consuming one unit. The seller also faces operating variable flow costs of C(n; z, ϕ), which

depend on the idiosyncratic state (n, z), as well as possibly the aggregate state ϕ. Further,

we make the following assumptions:

Assumption 1 For all (z, ϕ) ∈ Z × Φ:

(i) C is a continuous and increasing function of n, with C(n; z, ϕ) ≥ 0 and C(0; z, ϕ) = 0.

(ii) C(n; z, ϕ) is weakly convex in all n ∈ N.

Assumption 1 imposes mild regularity conditions on firm technology. It states that firm

profits are continuous in firm size. The curvature of C with respect to n determines the

degree of returns to scale. For now, we need not make an explicit assumption besides weak

convexity. Indeed, as we shall see, equilibrium prices depend non-linearly on sizes even when

8 Informational frictions in the product market are the preferred interpretation of Faig and Jerez (2005),
Gourio and Rudanko (2014b), and Foster et al. (2016), among others.
9 The source of variation in shopping disutility can be thought of as reflecting the cyclical nature of household

shopping behavior, documented by Petrosky-Nadeau et al. (2016) for the United States.
10 The usual conditions apply. For all z ∈ Z: λz(z|z) ≤ 0; λz(z

′|z) ≥ 0, ∀z′ 6= z;
∑
z′∈Z λϕ(z′|z) = 0; and∑

z′ 6=z λϕ(z′|z) < +∞.

6



marginal costs are constant in n. Similarly, the existence of a stationary distribution also

does not hinge on the curvature of C.
Besides serving their customers, incumbent sellers post prices in the product market.

Posting a price bears no explicit cost for an incumbent. Incumbent sellers exit the market

(and enter the pool of potential entrants) in either one of two ways: (i) if they go bankrupt

and lose all customers at once, at an exogenous rate δf > 0, or (ii) if they separate from their

last remaining customer (because the buyer leaves), at an exogenous rate δc > 0.11 These

events are mutually independent, and orthogonal to the (z, ϕ)-shocks.

Like incumbent firms, inactive firms are posting prices in order to attract customers and

start operating in the product market. However, they must incur an entry cost κ > 0, which

possibly depends on the aggregate state of nature, ϕ. The fixed cost κ can be thought of as

a proxy for the costs of maintaining idle product technology or, more broadly, as a cost to

market penetration in the sense of Arkolakis (2010). Sellers who successfully attract their

first customer (and thus start operating with n = 1) draw an initial productivity level z0 ∈ Z
from some distribution πz, where πz(z) ≥ 0, ∀z ∈ Z, and

∑
z∈Z πz(z) = 1. We assume free

entry of firms into the product market.

Pricing Contracts

At every instant, sellers announce price contracts in order to attract buyers. Buyers can

perfectly observe the posted contract and visit the seller posting it. For a customer-seller

match formed at time t, a price contract is defined as a sequence (pt+j : j ≥ 0), which

specifies the price level at each tenure j ≥ 0, conditional on no separation. Contracts are

complete and state-contingent. Thus, every element pt+j of the contract is contingent on the

history of aggregate and the firm’s idiosyncratic states up to date t+ j. Since all the relevant

states are public, then pt+j = p(nt+j ; zt+j , ϕt+j), ∀j, t.
The contractual environment is as follows. On the demand side, we assume no commit-

ment to the contract, in that matched buyers can costlessly transition to inactivity if they

so desire (though in equilibrium this will not occur because of the subsequent additional

cost c of re-sampling firms). On the sellers’ side, we make two key assumptions. First, the

seller fully commits to the contract that is posted. This means that contracts with captive

customers cannot be revised by the firm for the duration of the match, and contracts have

to comply with the firm’s prior promises.12 Second, we assume anonymity among buyers,

in that the firm is unable to discriminate between new and old customers, and thus cannot

index the contract to the buyer’s identity.13 This implies that the firm must internalize that

any additional revenue from expanding the number of customers comes at the expense of

11 In Appendix D.1 we suggest ways to endogenize this customer separation rate.
12 An interpretation of this assumption is that firms have a reputational concern, so that reneging on previous
promises entails unaffordable costs for them. We discuss the role of this assumption in Section 3.
13 Intuitively, this is meant to capture the idea that, in largely populated markets where implicit relationships
develop, buyers are anonymous to the seller. In Appendix D.2 we discuss the implications of relaxing the no
discrimination assumption.
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potentially lowering the average revenue from the incumbent base.

Product Markets

A sufficient statistic for each long-term pricing contract is the promised life-time value that

the contract delivers in expectation to the buyer at the point in time when the match is formed

and the contract is initiated. We generically denote this value by x. Let X = [x, x] ⊆ R+

be the set of feasible values, and let us assume that all sellers advertising the same value

x compete in all such contracts. Moreover, buyers cannot coordinate their decisions among

themselves. Up to the observable idiosyncratic state (n, z), sellers offering the same value

x are virtually indistinguishable to the buyer. Thus, x effectively indexes a product market

segment.

Each seller can simultaneously post, and each buyer can simultaneously search, in at most

one market segment. For each realization ϕ ∈ Φ of the aggregate state, let B(x;ϕ) ∈ [0, 1]

be the mass of buyers seeking to be matched under promised utility x, and S(x;ϕ) ≥ 0 be

the mass of sellers posting x. A market is said to be active if:

θ(x;ϕ) ≡ B(x;ϕ)

S(x;ϕ)
> 0

where θ(x;ϕ) is the buyer-to-seller ratio in market segment x, also referred to as the

market tightness. Agents take the mapping θ : X × Φ → [0,+∞) as given when directing

their search toward specific offers. In a typical x ∈ X , a buyer obtains offer x at the

endogenous Poisson arrival rate µ
(
θ(x;ϕ)

)
≥ 0, while a seller successfully finds a buyer for

offer x at the Poisson arrival rate η
(
θ(x;ϕ)

)
≥ 0, where η(θ) = θµ(θ). Further, we assume:

Assumption 2 The meeting rates satisfy:

(i) η : R+ → R+ and µ : R+ → R+ are twice continuously differentiable;

(ii) η is increasing and concave; µ is decreasing and convex;

(iii) For some decreasing h : R+ → R+, define the composition f = η ◦ µ−1 ◦ h. Then, the

function f(x)(x̂− x) is concave for all x ∈ [0, x̂] and x̂ > 0;

(iv) η(0) = limθ↗+∞ µ(θ) = 0, and limθ↗+∞ η(θ) = limθ↘0 µ(θ) = +∞.

The first two restrictions guarantee that the problems of the buyer and the seller are

well-defined; assumption (iii) is a restriction on the composition η ◦ µ−1 guaranteeing that

the price-posting problem of the seller has a unique interior solution; finally, part (iv) is a

transversality condition on the meeting rates.

Recursive Formulation

We seek to solve for the symmetric Markov perfect equilibrium of this economy. We narrow

attention to this class of equilibria in the following sense. (i) Markov-perfection means that

8



the equilibrium policies depend solely on the firm’s vector of payoff-relevant states (n, x; s),

where henceforth we denote s ≡ (z, ϕ). (ii) We look for a symmetric equilibrium in the sense

that all firms within the same product market x choose to post the same contract. This is

a consequence of the assumption that there is competition within each market segment, and

the fact that the firm’s states are fully observable. (iii) Finally, we restrict our attention

to a stationary environment, in which policies are time-varying only insofar as they are

state-dependent. Thus, subsequently we drop time subscripts unless otherwise needed.14

Because a dynamic pricing contract is a time path and thus a large and potentially

complex object, we exploit the property of stationarity to propose the following recursive

formulation. We define a recursive dynamic contract for a firm in state (n, x; s) as:

ω ≡
{
p,x′(n′; s′)

}
The elements of a recursive contract ω are the following. First, the contract specifies the

price p that is to be charged to each one of the n incumbent customers of the firm. Second,

the contract specifies the vector x′(n′; s′) ⊆ X of continuation payoffs that are promised by

the firm to each buyer on the next stage, i.e. under every possible size n′ ∈ {n− 1, n, n+ 1}
and exogenous state s′ ∈

{
(z′, ϕ), (z, ϕ′)

}
. By stationarity, contracts are rewritten every time

the seller changes sizes or productivity, or if an aggregate shock hits, and they remain in place

otherwise (i.e. x′(n′; s′) = x when n′ = n and s′ = s).Notice, finally, that the contract is not

indexed to the aggregate distribution of agents across states. This is an implication of the

property of block recursivity, which we take as given and we discuss in some detail in Section

2.5.

2.2 Buyer’s Problem

Inactive Buyers

Let us now describe the value functions of each type of agent in the economy. Let UB(ϕ)

be the expected value of an inactive buyer in state ϕ ∈ Φ. The buyer enters the market

segment that offers the highest valuation, and therefore:

UB(ϕ) = max
x̂(ϕ)∈X

uB
(
x̂(ϕ);ϕ

)
(1)

where uB
(
x;ϕ

)
is the value of searching in market x, satisfying the HJB equation:

ruB
(
x;ϕ

)
= −c(ϕ) + µ

(
θ(x;ϕ)

)(
x− uB

(
x;ϕ

))
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
uB
(
x;ϕ′

)
− uB

(
x;ϕ

))
(2)

14 We restrict ourselves to a Markov perfect equilibrium in order to obtain unique predictions for prices. How-
ever, in these type of models with dynamic contracts and commitment, real variables are uniquely determined
even when this restriction is not imposed. The reason is that sellers find it equivalent to change current prices
for future promised utilities.
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for any x ∈ X . Equation (1) states that the inactive buyer searches in the product market

that promises the highest expected value, x̂(ϕ). The value of entering market x incorporates

the search cost c(ϕ) > 0, and the option value of matching with a firm within said market.

The last additive term in equation (2) incorporates the expected change in value due to a

change in the aggregate state.15

Since inactive buyers choose the best market to search in, all active markets must be

equally attractive ex-ante. Therefore:

∀(x, ϕ) ∈ X × Φ : uB
(
x;ϕ

)
≤ UB(ϕ), with equality if, and only if, θ(x;ϕ) > 0

This says that a market either maximizes ex-ante payoffs for the inactive buyer, or it

remains unvisited. In equilibrium, a non-zero measure of markets is active, and we let

X ∗(ϕ) ≡
{
x ∈ X : θ(x;ϕ) > 0

}
⊆ X be the equilibrium set of markets in state ϕ ∈ Φ. Hence,

for any given aggregate state ϕ ∈ Φ, we have:

µ
(
θ(x;ϕ)

)(
x− UB(ϕ)

)
= ΓB(ϕ) (3)

for all x ∈ X ∗(ϕ), where we have defined the opportunity cost of matching for the buyer

in equilibrium market x as:

ΓB(ϕ) ≡ c(ϕ) + rUB(ϕ)−
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
UB(ϕ′)− UB(ϕ)

)
(4)

Note that, for each ϕ ∈ Φ, θ(x;ϕ) is an increasing function of x ∈ X . This result is in-

tuitive: more ex-post profitable offers attract a larger mass of buyers per seller, while sellers

offering less favorable contracts to the buyer can expect to find a match sooner. In equilib-

rium, firms design contracts for which a low meeting rate for buyers is compensated with

higher expected promised values. Further, the buyer-to-seller ratio is increasing in UB(ϕ):

when the inactive buyers’ outside option is higher, contracts must offer more attractive deals

in order to compensate for the opportunity cost of matching.

Active Buyers

Consider now a buyer who is currently consuming the homogeneous good from a firm

of size n and idiosyncratic productivity z, under contract ω =
{
p,x′(n′; s′)

}
. The contract

specifies the current price and the new continuation promises to be delivered by the seller

under each new possible state. The value for the buyer is given by the HJB equation:

15 Notation has been economized in two ways. First, since the value of inactivity is itself an equilibrium object,
we write θ(x;ϕ) when in fact we mean θ(x;ϕ,UB(ϕ)). Second, since market tightness is taken as given by the
agent, uB

(
x;ϕ

)
is in fact short for uB

(
x;ϕ, θ

)
, where θ maps from X ×Φ to R+. Similar concise notation will

be used throughout the paper.
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rV B(n,ω; s) = v(ϕ)− p+ (δf + δc)
(
UB(ϕ)− V B(n,ω; s)

)
(5)

+ (n− 1)δc

(
x′(n− 1; s)− V B(n,ω; s)

)
+ η
(
θ
(
x′(n+ 1; s);ϕ

))(
x′(n+ 1; s)− V B(n,ω; s)

)
+
∑
z′∈Z

λz(z
′|z)
(
x′(n; z′, ϕ)− V B(n,ω; s)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
x′(n; z, ϕ′)− V B(n,ω; s)

)

The right side of equation (5) has different additive terms. In the first line, the first

term, v − p, shows flow surplus for the agreed-upon price, and the second term states the

possibility of separation, due to either the destruction of the firm or the destruction of the

match. The second line includes the event that a customer (other than the one in question)

separates, in which case the firm becomes size n − 1 and changes the promised value to all

those customers that remain captive. The third line is the expected change in value due

to the firm successfully attracting a customer, in which case the seller becomes size n + 1

and implements value x′(n+ 1; s) ∈ ω. The likelihood of the event depends upon how tight

market x′(n+ 1; s) is. Finally, the last two lines of equation (5) include the change in value

due to an exogenous shock, whether idiosyncratic or aggregate.

Equation (5) shows that, when the buyer is captive and the seller is subject to size or

productivity changes, the customer must internalize how the seller will optimally redesign

the contract under the new state. This meaningful forward-looking aspect of demand arises

because the seller is committing to its customers.

2.3 Seller’s Problem

Incumbent Sellers

Consider a seller with idiosyncratic productivity z ∈ Z who is serving n ∈ N customers

under the promised value of x ∈ X . The seller must choose a new contract ω =
{
p,x′(n′; s′)

}
to maximize the life-time value:

rV S(n, x; s) = max
ω∈Ω

{
pn− C(n; s) + δf

(
V S

0 (ϕ)− V S(n, x; s)
)

(6)

+ nδc

(
V S
(
n− 1, x′(n− 1; s); s

)
− V S(n, x; s)

)
+ η
(
θ
(
x′(n+ 1; s);ϕ

))(
V S
(
n+ 1, x′(n+ 1; s); s

)
− V S(n, x; s)

)
+
∑
z′∈Z

λz(z
′|z)
(
V S
(
n, x′(n; z′, ϕ); z′, ϕ

)
− V S(n, x; s)

)

11



+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
V S
(
n, x′(n; z, ϕ′); z, ϕ′

)
− V S(n, x; s)

)}

where V S
0 (ϕ) denotes the value of having no customers (which we derive below).16 The

term
[
pn−C(n; s)

]
is the seller’s flow profits, composed of revenue from selling to n customers,

net of operating costs. The next term on the first line is the expected change in value if the

seller goes bankrupt, in which case she instantly loses all customers and enters the pool

of potential entrants. The third additive term includes the probability that one of the n

customers separates, in which case the seller delivers the promised value x′(n − 1; s). The

second line shows that, by posting a new offer x′(n+1; s), the seller might attract the (n+1)-

th buyer. When making a new offer, the seller understands the sorting behavior of buyers

across states for different promised values through the equilibrium θ schedule. Finally, the

value of the firm could change due to an exogenous state transition.17

When choosing ω, the seller is constrained by:

V B(n,ω; s) ≥ x (7)

Equation (7) is a promise-keeping (PK) constraint guaranteeing that, with its choice of

the contract, the seller honors the promises that were made in the past: the value that each

buyer of the firm obtains under the contract must be weakly greater than the value x that

was promised to her.

Potential Entrants

Inactive firms have no customers (i.e. n = 0) and, unlike incumbents, they must incur a

flow set-up cost κ > 0 in order to post a contract. Prior to selling the good, they must also

draw an initial productivity level z0 from the πz distribution. For each possible realization

z0 ∈ Z, their proposed contract is a promised value to their first customer.

Formally, the ex-ante value of the potential entrant in aggregate state ϕ solves:

rV S
0 (ϕ) = −κ(ϕ) +

∑
z0∈Z

πz(z0)vS0 (z0, ϕ) +
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
V S

0 (ϕ′)− V S
0 (ϕ)

)
(8)

This value is composed of the set-up flow cost κ (first additive term), the expected value

of posting a contract under productivity draw z0 (second term), and the expected change in

the ex-ante value of entry for a change in the aggregate state (third term). We have defined

the expected value of entry under a draw z0 by:

vS0 (z0, ϕ) ≡ max
x′∈X

η
(
θ(x′;ϕ)

)(
V S
(
1, x′; z0, ϕ

)
− V S

0 (ϕ)
)

(9)

16 The object Ω ≡ R × [x, x]k denotes the set of admissible contracts, where k ≡ 3kzkϕ − 1 is the number of
new promises made. For n = 1, we note that x′(n− 1; s) = ∅.
17 Figure B.1 in the Appendix provides a graphical depiction of all possible seller transitions.
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Once again, the firm understands how inactive buyers sort across markets, in that the

θ(·;ϕ) schedule is taken as given. There is no PK constraint in this case as the firm does not

yet have any customers.

We assume free entry into the product market for the first customer. Since the total

mass of sellers adjusts freely, firms will flood into the economy insofar as the expected value

of posting a contract exceeds the set-up cost κ(ϕ) > 0. Therefore, in an equilibrium with

positive entry in all aggregate states, it must be the case that:

∀ϕ ∈ Φ : V S
0 (ϕ) = 0

The free-entry condition thus pins down the average market tightness among single-

customer firms in the cross-section of initial productivities.

2.4 Optimal Contract

In this section, we derive and describe the properties of the optimal contract for a typ-

ical firm. Our main result is that, since contracts are complete, and sellers and buyers

can engage in revenue-neutral transfers schemes, the seller’s and the joint surplus problems

are equivalent. As we shall see, this simplifies the state space and renders the equilibrium

computationally tractable.

Joint Surplus Problem

Consider a typical firm whose state vector is (n, x; s). As seen in the last section, the

optimal contract ω =
{
p,x′(n′; s′)

}
can be obtained as the solution to the problem of the

seller, described in (6). A standard monotonicity argument reveals that sellers will offer the

lowest values to their buyers such that the seller’s promises are still honored, and so the PK

constraint (7) will hold with equality. To economize on notation, for the remainder of the

paper we write x (a predetermined state variable) in place of V B(n,ω; s).

Next, define the joint surplus in a typical state (n, x; s) as the sum of the seller’s expected

value from the match, V S(n, x; s), and the aggregate expected value for all the n customers

of the firm:

W (n, x; s) ≡ V S(n, x; s) + nx

In Appendix C.1 we show that the joint surplus can be written as follows:

(r + δf )W (n, x; s) = max
x′(n′;s′)

{
n

(
v(ϕ) + (δf + δc)U

B(ϕ)

)
(10)

−

(
C(n; s) + η

(
θ
(
x′(n+ 1; s);ϕ

))
x′(n+ 1; s)

)
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+ η
(
θ
(
x′(n+ 1; s);ϕ

))(
W
(
n+ 1, x′(n+ 1; s); s

)
−W (n, x; s)

)
+ nδc

(
W
(
n− 1, x′(n− 1; s); s

)
−W (n, x; s)

)
+
∑
z′∈Z

λz(z
′|z)
(
W
(
n, x(z′, ϕ); z′, ϕ

)
−W (n, x; s)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
W
(
n, x(z, ϕ′); z, ϕ′

)
−W (n, x; s)

)}

Intuitively, equation (10) represents the joint surplus as the present discounted value of

the buyers’ total surplus, net of the seller’s total costs. On the first line, the term n
(
v+(δf +

δc)U
B
)

represents the aggregate flow surplus for all the n customers of the firm, composed

of the sum of the per-customer utility from consumption and the expected per-customer

gains from separation. The second line collects (inside the parenthesis) the total costs of the

match for the seller, equal to total operating costs (first term) plus the expected cost of the

new contract. The latter is composed of the product of the promised value, x′(n + 1), and

the endogenous probability of attraction, η
(
θ(x′(n+ 1))

)
. The remaining terms in equation

(10) take into account the usual transitions (i.e. separation, growth, and exogenous shocks).

Then, we can show:

Proposition 1 (Joint Surplus Problem) The following properties hold:

i. The firm’s and the joint surplus problems are equivalent. In particular:

(a) If some ω =
{
p,x′(n′; s′)

}
solves (6)-(7), then x′(n′; s′) is a solution to (10).

(b) Conversely, for every vector x′(n′; s′) that solves (10), there exists a unique p for

which
{
p,x′(n′; s′)

}
is a solution to (6)-(7).

ii. The joint surplus function W (n, x; s) is constant in x.

For the proof, see Appendix C.1. Part i. of Proposition 1 establishes that the contract

that maximizes the seller’s profits can be found by solving an alternative problem, given by

(10). In this problem, the contract maximizes the profits of all the parties involved in a

utilitarian fashion, provided that the seller extracts rents from each buyer up to the limit

established by promise-keeping. Since the contract space is complete (that is, it specifies

continuation promises for each and every possible future state), and both agents have linear

preferences, there always exists a menu of price and promised utility that, for any future

state, redistributes rents among the seller and its customers in a payoff-maximizing way.

Part ii. of the proposition follows immediately from this logic, and clarifies why problem

(10) is much simpler to solve than the firm’s problem. Since price and continuation promises

map one-for-one, the maximized surplus is invariant to the rent-sharing components of the

contract. Conveniently, this means that the problem can be split in two stages. In Stage 1, the

firm sets the vector of continuation promises x′(n′; s′) that maximizes the size of the surplus

under every possible combination of future states. In Stage 2, the price level implements
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such an allocation, thus splitting and distributing rents among all n+ 1 agents involved, by

ensuring that PK binds in every single state. Further, the surplus is also constant in the

firm’s outstanding promise, x, for this is a predetermined state that was chosen optimally

previously by the firm. Thus, given s, there exists a sequence {Wn(s)}+∞n=1 such that:

∀(n, x) ∈ N×X : Wn(s) = W (n, x; s)

As a result, the policy that solves problem (10) is not a function of x, and neither is the

optimal price level, simplifying the characterization of the equilibrium.18

Equilibrium Characterization

By ex-ante indifference, the option value of matching for the buyer is constant across

markets and given by ΓB(ϕ) (equation (4)). Therefore, the tightness of market x is:

θ(x;ϕ) = µ−1

(
ΓB(ϕ)

x− UB(ϕ)

)
(11)

By Assumption 2.i and continuity of θ on x, equation (10) describes the maximization of

a continuous function over a compact support, so there exist promises
{
x′(n + 1; s), x′(n −

1; s),x′(n; s′)
}

and a price level p(n; s) that solve the joint surplus problem. Once again, note

that we index these policies by n, but not x.

Stage 1. Continuation promises We begin with the choice of x′(n + 1; s). First, by

equation (11) and differentiability of η, the following first-order condition is sufficient:19

∂η
(
θ(x′;ϕ)

)
∂x′

(
Wn+1(s)−Wn(s)

)
=
∂η
(
θ(x′;ϕ)

)
∂x′

x′ + η
(
θ(x′;ϕ)

)
(12)

Let x′(n+1; s) denote the solution to equation (12). Intuitively, the optimal continuation

value x′(n + 1; s) equates the expected marginal benefit of upgrading the size of the firm

by one customer (left-hand side), to the expected marginal costs of such a transition (right-

hand side). On the left-hand side: an increase by one util in the promised value increases

the joint surplus by the amount (Wn+1 −Wn) > 0 in case the seller makes a size transition.

These gains must then be weighted by the marginal effect of the raised promised value on

the likelihood that the firm meets a new customer. On the right-hand side: for every util

spent on the continuation promise, the seller incurs in two associated costs. First, the direct

cost of delivering the new value to the additional customer, weighted by the change in the

meeting rate. Second, the decrease in the price level of all currently captive buyers of the

firms, by η
(
θ(x′(n+ 1; s);ϕ)

)
utils, which is required by promise-keeping.

18 Schaal (2017) uses similar insights for tractability in a firm-dynamics search model of the labor market.
19 Sufficiency obtains because the second-order condition follows from Assumption 2.iii when, in the language

of that Assumption, we pick h(x) ≡ ΓB

x−UB and x̂ ≡Wn+1 −Wn.
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The objects x′(n; s′), s′ 6= s, and x′(n − 1; s), cannot be determined by a surplus-

maximizing condition similar to (12) because the joint surplus is constant in these ob-

jects (Proposition 1, part ii.). Instead, these values are purely redistributive: they affect

only the way in which the total surplus is split between buyers and seller. Specifically, the

firm’s choice must be consistent with the sorting behavior of inactive buyers (equation (11)).

By symmetry, we have that for any two sellers of sizes n ≥ 2 and m, respectively, then

x′(n− 1; s) = x′(m+ 1; s) if m = n− 2. In words, the optimal downsizing choice for a size-n

seller (left side of the equality) must be consistent with the optimal upsizing choice for a

firm of size n − 2 (right side). Similarly, when transitioning to another state, equation (11)

and symmetry require that x′(n; s′) = x′(m + 1; s′) for any two sellers of sizes n ≥ 2 and

m = n− 1. Finally, for n = 1, the free entry condition must be satisfied, implying:

κ(ϕ) =
∑
z0∈Z

πz(z0)η
(
θ
(
x′(1; z0, ϕ);ϕ

))(
W1(z0, ϕ)− x′(1; z0, ϕ)

)
(13)

Summing up, the set of equilibrium markets is X ∗ ≡
{
x′(n; z, ϕ) : (n, z, ϕ) ∈ N×Z ×Φ

}
,

where x′(n; z, ϕ) solves (12) for each n ≥ 2, and (13) for n = 1.
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Figure 1: Equilibrium tightness θ : x 7→ µ−1
(

ΓB

x−UB

)
, and set of equilibrium markets.

Market tightness levels, θn(z, ϕ) ≡ θ
(
x′(n; z, ϕ);ϕ

)
, are found via equation (11). Since

θ(x;ϕ) is an increasing and continuous function of x, θn inherits the size-dependence of x′.

In turn, θn determines firm growth rates in equilibrium. Formally, the law of motion of a

type-z seller with nt customers at time t is given by:

nt+∆ − nt =



1 w/prob. η
(
θnt+1(z, ϕ)

)
∆ + o(∆)

−1 w/prob. ntδc∆ + o(∆)

−nt w/prob. δf∆ + o(∆)

0 else

(14)

for a small time lapse ∆ > 0, where lim∆↘0
o(∆)

∆ = 0. For instance, when x′ is decreasing

in n, smaller firms attract more buyers per unit of time by offering higher ex-post values,

so the buyer-to-seller ratio is higher in those markets, and these firms grow relatively faster
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compared to other firms. Figure 1 depicts the different markets in equilibrium for this case.

All equilibrium markets are distributed on the θ schedule defined by buyer’s ex-ante revenue

equalization. To grow, the seller makes a state-contingent promise that is strictly below the

current valuation of her buyers (depicted on the horizontal axis), but always above UB to

keep them from separating. In equilibrium, the resulting collection of markets makes inactive

buyers indifferent.

Stage 2. Prices Finally, the equilibrium price can be backed out of the PK constraint,

which is binding. First, we replace V B(n,ω; z, ϕ) = x′(n; z, ϕ) and the components of ω in

equation (5). Then, solving for p in the resulting equation, we obtain:

pn(z, ϕ) = v(ϕ)− rx′(n; z, ϕ)︸ ︷︷ ︸
Baseline component

+ δf

(
UB(ϕ)− x′(n; z, ϕ)

)
︸ ︷︷ ︸

Exit component

+ η
(
θn+1(z, ϕ)

)(
x′(n+ 1; z, ϕ)− x′(n; z, ϕ)

)
︸ ︷︷ ︸

Growth component

+ nδc

(
UB(ϕ) + (n− 1)x′(n− 1; z, ϕ)

n
− x′(n; z, ϕ)

)
︸ ︷︷ ︸

Separation component

+
∑
z′∈Z

λz(z
′|z)
(
x′(n; z′, ϕ)− x′(n; z, ϕ)

)
︸ ︷︷ ︸

Idiosyncratic-shock component

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
x′(n; z, ϕ′)− x′(n; z, ϕ)

)
︸ ︷︷ ︸

Aggregate-shock component

(15)

The optimal price level can be decomposed into the following additive parts. The first one

is the price level that would prevail if, in the absence of any exogenous shock, each customer

were to stay matched forever with its seller and size did not change going forward. We call

this term the baseline price level.20 The remaining terms in (15) introduce the necessary

adjustments for possible changes in firm states.

To provide intuition, consider again the parametrization under which x′ decreases in n

(as in Figure 1). Over and above the baseline price, the firm first offers a price reduction

of δf
(
UB − x′(n)

)
≤ 0 to compensate the customer for the expected loss in value in the

event that the firm exits the market. We label this the exit component. Second, the term

η(θn+1)
(
x′(n + 1) − x′(n)

)
≤ 0 is a compensation for the eventuality that the firm grows.

This compensation is thus labeled the growth component. Third, the firm adjusts the price

for the event of customer separation: a reduction in size lowers the seller’s value and has a

pecuniary externality on all those customers that remain matched, so the price must again be

adjusted to remain compatible with the seller’s commitment. We call this term the separation

component. If a separation occurs, then the separating customer obtains UB, whereas the

remaining n − 1 customers each obtain x′(n − 1). This amounts to an average value of
UB+(n−1)x′(n−1)

n per customer. Finally, the last two terms in equation (15) adjust the price

level for expected changes in the exogenous states.

20 Indeed, in that case we would have p = v − rx, that is x =
∫ +∞

0
e−rt(v − p)dt, the PDV of perpetually

obtaining the fixed surplus (v − p).
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In Section 3 we will discuss the different price effects that may be present in equilibrium

and provide some intuition for the direction of the dependence on size.

2.5 Distribution Dynamics

To close the equilibrium, we need to describe the dynamics of the distribution of agents.

The equilibrium of the economy described above features heterogeneous agents making

forward-looking decisions and sorting into distinct product markets in the presence of both

idiosyncratic and aggregate shocks. The distribution of agents across markets in turn de-

pends on the aggregation of such decisions. Yet, our equilibrium characterization has been

silent on the composition of buyers and sellers across market segments, or the evolution of

this distribution. This is because the equilibrium is block-recursive.

In our model, block recursivity arises from two key ingredients. First, we assume that

search is directed, and thus sellers’ offers are not contingent on the identity, and in particular

the outside option, of the buyer. As a result, market tightness, which embodies agents’

distributions, serves as a sufficient statistic for both sellers and buyers when making decisions,

and allows them to not having to forecast the evolution of aggregates over future states of

the economy. Second, the ex-ante revenue-equalization condition across all markets among

inactive buyers (equation (3)) implies that the equilibrium tightness on each market adjusts

to be consistent with agents’ beliefs.21 Because market tightness is a sufficient statistic

to evaluate payoffs in this economy, the model allows for the description of distribution

transitional dynamics by means of flow equations (below). This makes our environment

particularly apt to study aggregate product market dynamics.

Let Sn,t(z) ≥ 0 be the total measure of firms of size n with idiosyncratic productivity

z ∈ Z at time t ≥ 0. Recall that all such firms are seeking new customers in market

x′(n + 1; z, ϕ). Let BI
n+1(z, ϕ) be the measure of (inactive and searching) buyers within

market x′(n+ 1; z, ϕ). Then, market tightness must adjust so that:

BI
n+1,t(z, ϕ) = θn+1(z, ϕ)Sn,t(z) (16)

at every t ≥ 0 for all n ∈ N. Using that η(θ) = θµ(θ), equation (16) can alternatively be

written as µ
(
θn(z, ϕ)

)
BI
n,t(z, ϕ) = η

(
θn(z, ϕ)

)
Sn−1,t(z), stating that the measure of inactive

buyers who become customers of a (n, z)-type firm is equal to the measure of sellers of

productivity z and size n− 1 who acquire their n-th customer.

Similarly, let BA
n,t(z) be the measure of customers that are matched with firms of type

(n, z) at time t. By construction, we have:

BA
n,t(z) = nSn,t(z) (17)

21 Kaas and Kircher (2015) exploit similar insights to obtain tractability. An alternative approach would be
to dispense of the indifference condition among inactive buyers, and assume instead free entry of firms across
all markets (e.g. Menzio and Shi (2010, 2011) and Schaal (2017)).
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at any t ≥ 0. The measures of inactive and active buyers must add up to the total mass

of buyers in the economy at all times, and thus:

∀ϕ ∈ Φ, ∀t ≥ 0 :
+∞∑
n=1

∑
z∈Z

BA
n,t(z)︸ ︷︷ ︸

=BAt

+
+∞∑
n=1

∑
z∈Z

BI
n,t(z, ϕ)︸ ︷︷ ︸

=BIt

= 1 (18)

This equation establishes an aggregate feasibility constraint: the unit mass of buyers must

be either matched with a firm and consuming, or looking for a match.

Market tightness jumps instantaneously in response to an aggregate shock.22 This is

because the mass of inactive buyers adjusts immediately to guarantee that the indifference

condition among unmatched buyers (equation (3)) is met in all states of nature. However,

by block recursivity, tightness remains constant along each aggregate state. The mass of po-

tential entrants, denoted S0,t(ϕ), jumps following a ϕ-shock, and otherwise evolves smoothly

due to sellers flowing in and out of inactivity in the transition. The distribution of firms,

{Sn,t(z)}, is slow-moving and continuous in time. Because of this slow adjustment, the model

thus feature sluggish aggregate dynamics.

Formally, the flows into and out of size n = 1 and some z ∈ Z are:

∂tS1,t(z) = πz(z)η
(
θ1(z, ϕ)

)
S0,t(ϕ) + 2δcS2,t(z) +

∑
z̃ 6=z

λz(z|z̃)S1,t(z̃)

−
(
δf + δc + η

(
θ2(z, ϕ)

)
+
∑
z̃ 6=z

λz(z̃|z)
)
S1,t(z) (19)

where ∂t is the partial derivative operator with respect to time. Inflows (first line) are

given by successful entrants drawing productivity z upon entry, and by the share of incum-

bents that are either losing a customer, or transitioning into z from some z̃ 6= z. Outflows

(second line) are given by firms that either die, lose their only customer, gain a second cus-

tomer, or transition to a distinct productivity state, z̃ 6= z. The aggregate state ϕ enters the

law of motion implicitly through its influence on the jump dynamics of S0 and θ1. For n ≥ 2:

∂tSn,t(z) = η
(
θn(z, ϕ)

)
Sn−1,t(z) + (n+ 1)δcSn+1,t(z) +

∑
z̃ 6=z

λz(z|z̃)Sn,t(z̃)

−
(
δf + nδc + η

(
θn+1(z, ϕ)

)
+
∑
z̃ 6=z

λz(z̃|z)
)
Sn,t(z) (20)

The interpretation of equation (20) is almost identical to that of the previous equation.

22 Our notation convention is the following: (i) explicit dependence on ϕ denotes that a variable jumps with
ϕ; (ii) a subscript t denotes time-dependence for fixed ϕ.

19



Finally, the measure of potential entrants, S0,t(ϕ), obeys the following ODE:

∂tS0,t(ϕ) = δfSt + δc
∑
z∈Z

S1,t(z)−
∑
z0∈Z

πz(z0)η
(
θ1,t(z0, ϕ)

)
S0,t(ϕ) (21)

where St ≡
∑+∞

n=1

∑
z∈Z Sn,t(z) is the total measure of incumbent firms (i.e. firms with

one or more customers). The usual interpretation applies, with the particularity that entering

firms must now draw an initial productivity level from the πz distribution.

Equations (19)-(21) offer a full characterization of the model’s dynamics. We may now

equate flows in and out of every possible state to obtain the stationary distribution of firms:

∂tSn,t(z) = 0, ∀n, z.23 As the last step, we must derive the aggregate measures of agents in

the stationary solution. This is shown in Appendix F.1.

2.6 Equilibrium Definition and Efficiency

We are now ready to define an equilibrium:

Definition 1 A Recursive Equilibrium is, for each aggregate state ϕ ∈ Φ and time t ∈ R+,

a set of value functions V S(·, ϕ) : N × X × Z → R and V B(·, ϕ) : N × Ω × Z → R; a value

of inactivity UB(ϕ) ∈ R; joint surplus and prices
{
Wn(z, ϕ), pn(z, ϕ) : (n, z) ∈ N× Z

}
, and

continuation promises
{
x′(n+1; z, ϕ), x′(n−1; z, ϕ), {x′(n; z′, ϕ) : z′ ∈ Z}, {x′(n; z, ϕ′) : ϕ′ ∈

Φ}
}

; a decision rule x̂(ϕ) for inactive buyers; a market tightness function θ(·, ϕ) : X → R+;

aggregate measures of agents {S0,t(ϕ),St, BA
t , B

I
t }; and a distribution of sellers and buyers:{

Sn,t(z), B
A
n,t(z), B

I
n,t(z, ϕ) : (n, z) ∈ N×Z

}
; such that: [i] the value functions solve (5) and

(6), UB(ϕ) satisfies the free-entry condition (13), and the joint surplus Wn(z, ϕ) solves (10);

[ii] price and continuation promises satisfy (15) and (12), respectively; [iii] x̂(ϕ) solves the

inactive buyer’s problem, (1)-(2); [iv] market tightness θ(x;ϕ) is consistent with the sorting

behavior of inactive buyers, (3); and [v] aggregates and the distribution of agents satisfy the

flow equations in Section 2.5.

Proposition 2 below states that, given the search frictions, a Recursive Equilibrium is

efficient. In our environment, the planner chooses distributions of buyers and sellers, as well

as market tightness levels, in order to solve:

max E0

{∫ +∞

0
e−rtWt(ϕt)dt

}
(22)

where welfare is:

Wt(ϕt) ≡ −κ(ϕt)S0,t +

+∞∑
nt=1

∑
zt∈Z

(
v(ϕt)B

A
nt,t(zt)− C(nt; zt, ϕt)Snt,t(zt)− c(ϕt)B

I
nt,t(zt)

)
23 In general, an analytical solution for the stationary distribution does not exist unless (i) we place an upper-
bound on the space of seller sizes, or (ii) we shut down (z, ϕ)-shocks and assume δf = 0. For (i), see Proposition
4. For (ii), see Appendix F.2.
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subject to the cross-sectional and dynamic properties of the distribution of agents described

in Section 2.5. Aggregate welfare in this economy equals the present discounted sum of

consumption gains by active buyers, net of search costs by inactive buyers, and production

and entry costs by firms. Using this definition, we then establish:

Proposition 2 (Efficiency) A Recursive Equilibrium is efficient.

For the proof, see Appendix C.2. This result implies that, given the search frictions,

our model features efficient firm dynamics and efficient pricing behavior. In particular,

markup dispersion is necessary to optimally distribute trade gains among buyers and sellers,

as prices in our environment serve to efficiently direct buyer search toward specific product

markets. The result is in contrast to models explaining dispersion in firm-level revenue

through (inefficient) resource misallocation (e.g. Hsieh and Klenow (2009)). While we do

not rule out other interpretations, our setting demonstrates that this type of dispersion may

also be generated through efficient pricing in the context of a frictional market.

3 Model Discussion

This section presents the qualitative properties of the equilibrium, with an emphasis on

how product market frictions lead firms of different sizes to set different combinations of

price and promised utilities, and to experience different subsequent growth paths. Then, we

comment on the key assumptions and describe the role that they play in the model.

3.1 Qualitative Features

We begin with a useful result. Under a standard matching function, the model admits a

partial analytical representation in the following sense: for each given value of inactivity UB,

the equilibrium joint surplus Wn+1 can be found as the solution of a second-order difference

equation, i.e. as a function of n, Wn, Wn−1, and parameters. Assume:

µ(θ) = θγ−1

with η(θ) = θµ(θ), where γ ∈ (0, 1) is the matching elasticity.24 Then:

Proposition 3 (Solution of the Joint Surplus) For each (z, ϕ) ∈ Z × Φ:

(a) The joint surplus Wn(z, ϕ) solves a second-order difference equation in n:

Wn+1(z, ϕ) = Wn(z, ϕ) + UB(ϕ) +

(
ΓB(ϕ)

γ

)γ (
ΓSn(z, ϕ)

1− γ

)1−γ

(23)

where ΓSn(z, ϕ) is a function of n, Wn, Wn−1, and parameters (see Appendix).

24 This arises from a Cobb-Doublas matching function, M(B,S) = BγS1−γ . However, Proposition 3 holds for
the more general CES case µ(θ) = (1 + θξ)−1/ξ, of which Cobb-Douglas is a special case when ξ → 0.
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(b) Promised utility equals: xn+1(z, ϕ) = γ
(
Wn+1(z, ϕ)−Wn(z, ϕ)

)
+ (1− γ)UB(ϕ).

For the proof, see Appendix C.3. Proposition 3 shows that, in spite of the rich dynamics

of the model, the joint surplus can be expressed in a very tractable form. The formulae have

intuitive interpretations. First, in the Appendix we show that:25

ΓB = µ(θn+1)
(
xn+1 − UB

)
︸ ︷︷ ︸

Ex-post
buyer net gains
from new match

and ΓSn = η(θn+1)
(
Wn+1 −Wn − xn+1

)
︸ ︷︷ ︸

Ex-post
seller net gains

from new match

For each equation, the right hand-side of the equality gives the product of the ex-post net

gain from a new match, times the probability that a match occurs from the perspective of

buyer and seller, respectively. Thus, in equilibrium ΓB and ΓSn are the ex-ante net gains from

matching for the buyer and the seller, respectively. ΓB is constant in n (and z) because of

ex-ante buyer indifference (equation (3)). ΓSn depends on the seller’s size: the seller extracts

the total gain in joint surplus (Wn+1 −Wn) > 0, net of the value xn+1 that was promised to

the new consumer.

Therefore, part (a) of Proposition 3 says that the equilibrium marginal net gain in joint

surplus from each new match (i.e. Wn+1−Wn−UB) is a convex combination of the ex-ante

net match gains that accrue to the new customer and her seller. Part (b) states that the

matching elasticity parameter γ governs how the surplus is shared ex-post between the seller

and the new customer. The customer’s ex-post net gains are given by:

xn+1 − UB = γ
(
Wn+1 −Wn − UB

)
showing that a fraction γ of the total gains in joint surplus are absorbed by the new

incoming buyer. Interestingly, the ex-post gains for the seller must incorporate rents shared

with the new buyer, as well as all those shared with the pre-existing buyers:

V S
n+1 − V S

n︸ ︷︷ ︸
Seller’s overall ex-post
net gain from growing

= (1− γ)
(
Wn+1 −Wn − UB

)
︸ ︷︷ ︸

[A] Surplus extracted
directly out of new customer

+ n
(
xn − xn+1

)
︸ ︷︷ ︸

[B] Surplus transferred between
seller and pre-existing customers

(24)

In words, after a n → (n + 1) transition, the seller absorbs a share (1 − γ) of the total

net gain in joint surplus from the new customer (term [A]). In addition, some surplus is

transferred between the seller and the n pre-existing customers (term [B]).

For example, when buyer valuation is decreasing in n (i.e. xn > xn+1), term [B] is a

positive transfer from all n pre-existing customers to their seller. Figure 2 shows, in this

case, how net gains for buyers and sellers change with size (from both ex-ante and ex-post

25 For the remainder of this section, we suppress state dependence to alleviate notation.
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Figure 2: Ex-ante and ex-post gains for the new buyer and the seller (left and middle
panels), and decomposition of seller gains, across seller size n (right panel), for a numerical
example. The red lines are ΓB and ΓSn . The black lines are (xn+1 − UB) and (Wn+1 −
Wn − xn+1). The right panel is the decomposition in equation (24).

perspectives). We see in the right-most panel that, as the seller grows, she increasingly prefers

to extract rents from the current customer base (term [B] increases), and is less concerned

with extracting surplus from the new consumer (term [A] decreases).
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Figure 3: Change in joint surplus, net customer ex-post gains, market tightness, and firm
growth, as a function of size, for the case with constant marginal cost (i.e. C(n) ∝ n). Firm
growth (equation (14)) has been decomposed between the rate of customer attraction (solid
line) and that of customer attrition (dashed line). The intersection of these two lines marks
the stationary size.

Finally, we describe the relationship between promises (xn) and sizes (n) in equilibrium.

Figure 3 shows a numerical example in which promised utilities are strictly decreasing with

size. This will be the case in our estimated model. The reason for the relation is that the

seller needs to raise resources from future customers quickly in order to overcome the initial

market penetration cost, κ. At the same time, she must entice customers to remain matched.

Thus, she lowers the promise as more customers join, but always so that xn > UB, ∀n. As a

result, market tightness is higher for smaller firms, who experience faster growth on average.

On the other hand, when the costs to market penetration are sufficiently low, the need to

raise resources from the future is weaker. In this case, the profile of continuation values

increases, and price will rise as the seller grows (Figure B.2 in Appendix B). In sum, the

model can generate different price-size correlations, depending on parameters.

3.2 Discussion of the Model’s Main Assumptions

Our model is somewhat stylized, particularly on the contractual environment. Here, we

comment on the three most relevant assumptions:
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Endogenous Separations We have assumed that customers cannot bypass the costly

inactive state when they separate (either voluntarily or due to a shock) from their seller.

Allowing for endogenous seller-to-seller transitions would incorporate an additional dimen-

sion into the firm’s pricing decisions. Besides the dynamic rent-extraction trade-off between

incoming customers and the current base, the firm would now have to solve an attraction-

attrition trade-off: a more ex-post profitable contract for inactive buyers may enhance the

chance of a customer match, but also increase the likelihood of a voluntary separation. We

propose how to endogenize this margin in Appendix D.1, and discuss the technical challenges

it presents.

Price Discrimination Secondly, we have assumed that sellers cannot price discriminate

across customers of different tenure. While this assumption is realistic for most major sectors

of the economy, especially those in which sellers face a large number of potential buyers (such

as retail, our application in Section 4.1), it may not be apt for certain others, for instance

industries in which personalized buyer-seller relationships may explicitly (newspapers, cell

phone and Internet services, commercial banks, etc.). Gourio and Rudanko (2014b) propose

a model for such type of relationships, whereby sellers first attract the buyer by offering

her a price discount below her valuation of the good, and charge maximum valuation there-

after. Though the focus of our paper is altogether different, it is still worth emphasizing

that our pricing policy does not collapse to this pricing strategy when we allow for discrim-

ination. Moreover, allowing for discrimination in our environment not only preserves the

block-recursivity property, which is key for tractability, but it also preserves firm dynamics

and price dispersion. Importantly, however, assuming discriminatory contracting gives rise

to a new feature: equilibrium multiplicity in the form of price indeterminacy. We explain

these results in detail in Appendix D.2.

Commitment The third main contractual assumption is that of perfect commitment on

the seller’s side. Intuitively, long-term contracts are a stand-in for a reputational concern on

the side of the firm. By promising to deliver a utility level, the seller can balance the price

with the continuation value to lure customers into remaining matched. In turn, customers

understand that the firm will not price gouge ex-post, and they remain loyal to their seller

in order to avoid going through the costly inactive state. If we were to dispense of the

assumption, we would lose block recursivity and, thereby, the attractive analytical features

of the equilibrium. The reason for this is that, due to a time-inconsistency problem, firms

could engage in various forms of pricing strategies, all of which could be sustained under

“implicit contracts”, paired with trigger strategies on the buyer side (e.g. Nakamura and

Steinsson (2011)). These type of contracts might exhibit history-dependence, which in our

framework would break the recursive structure. Further, sellers would need to keep track

of the buyer distribution, for ex-ante revenue equalization would no longer hold. For these

reasons, seller’s commitment is a key aspect for our set-up.
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4 Quantitative Analysis

In this section, we outline the estimation exercise, and study how customer accumulation

affects the micro- and macro-economic impact of aggregate shocks on markups.

4.1 Data

We use micro-pricing data on the U.S. retail sector. Although the model is general,

we view the retail sector as fitting well with its basic features. In this interpretation of

the theory, sellers are stores, and buyers are private consumers. We use data of unique

granularity which allows us to focus on narrowly-defined (physically) homogenous products

sold by sellers of different sizes within the same market, in accord with the environment of

the model. The types of goods in the data are non-durable consumption products that, as

in the model, are likely to engage customers and sellers into repeated purchases. The fact

that retail stores face a potentially large number of customers implies that the customer

anonymity assumption likely provides a good approximation for the bulk of the observed

store transactions. Finally, under this framing of the model, we interpret the buyer’s search

cost as a proxy for the transport, information, and/or utility costs associated to finding

and/or switching away from trusted suppliers.

We use micro-level data from the Information Resources, Inc. (IRI) scanner data set

(2001-2007).26 We use weekly average prices for products sold over 5,000 U.S. retail (drug

and grocery) stores on 50 different (geographic) markets defined at the MSA level. Products

are identified by their Universal Product Code (UPC).27 The details of data selection and

variable construction can be found in Appendix A. To capture the degree to which the same

good is sold at different prices by different stores, we follow the literature (e.g. Kaplan et al.

(2018)) and focus on relative prices. The relative price of good u in store s of market m and

week t is the log-deviation from the average price of such good across stores:

p̂usm,t = logPusm,t −
1

Num,t

Num,t∑
s=1

logPusm,t (25)

where Num,t is the number of stores selling the good in that market and week. To measure

price dispersion in the data we take the average of the standard deviation of p̂usm,t across

products, stores, markets, and time. In our selected sub-sample, dispersion is high (10.55%),

in line with previous studies (e.g. Kaplan and Menzio (2015)).

26 The data are available for request at www.iriworldwide.com/en-US/solutions/Academic-Data-Set. For
documentation, see Bronnenberg et al. (2008). Recent studies in economics using the IRI data include Alvarez
et al. (2014), Gagnon and López-Salido (2014), and Coibion et al. (2015).
27 The UPC is an array of numerical digits that is uniquely assigned to a given item. The description of
products is very detailed, including information about the brand, flavor, and several packaging attributes.
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4.2 Estimation

To estimate the model, the first step is to parametrize the cost function of firms and

establish the structure of the exogenous shocks. For the former, we choose:

C(n; z, ϕ) = c̃(z, ϕ) · nψ (26)

where c̃(z, ϕ) > 0 is a size-invariant scale parameter, and ψ ≥ 1 is a curvature pa-

rameter controlling for the degree of returns to scale.28 When marginal costs are increas-

ing in size (ψ > 1), there is a natural upper bound on seller size for each state, given by

n∗(z, ϕ) ≡
(
ψc̃(z, ϕ)/v

) 1
1−ψ , beyond which the static flow surplus πn(z, ϕ) ≡ nv−C(n; z, ϕ) is

strictly decreasing and the seller does not want to grow further. The scale parameter changes

across sellers and aggregate states, with c̃(z, ϕ) = wez+ϕ, where w > 0 controls the optimal

scale. This specification of shocks is isomorphic to multiplicatively-related idiosyncratic and

aggregate TFP shocks in the production function, standard in the literature (e.g. Kaas and

Kircher (2015)).

Finally, we must parametrize the states. The size grid is N ≡ {1, 2, . . . , n}, for some

upper bound n < +∞ that is large enough.29 Then, we show:

Proposition 4 (Stability) Given an equilibrium allocation, the dynamical system repre-

sented by the flow equations (19)-(20)-(21) over the grid (n, z) ∈ N × Z is stable, and con-

verges to an invariant distribution for each aggregate state ϕ ∈ Φ. The invariant distribution

can be analytically characterized.

For the proof, see Appendix C.4. Further, we must specify the structure of the exogenous

shocks, (z, ϕ). In principle, we should estimate ks(ks−1) transition rates for each s ∈ {z, ϕ},
a potentially large number. To reduce dimensionality, in practice we assume that the shocks

follow continuous-time analogues of AR(1) processes (or Ornstein-Uhlenbeck processes), in

logs. This reduces the estimation to only two parameters per shock: a persistence ρ, and a

volatility σ. For details, see Appendix E.1.

Calibration Strategy

We seek to match aggregate moments related to store dynamics in the U.S. retail sector

as well as average moments across all years of our sample of micro-pricing data.

The model is parsimonious, with 11 free parameters to be identified. Of these, 9 are deep

parameters:
(
v, r, δf , δc, w, ψ, κ, γ, c

)
, corresponding to the value of consumption, the time

discount rate, the separation rates of sellers and consumers, the scale and curvature param-

eters of the operating cost function, the entry cost for new sellers, the matching elasticity,

28 As seen in Section 3, curvature in the cost function is not necessary for the existence of price dispersion in
the model. However, the parameter ψ will help us pin down the size dependence in prices.
29 In particular, this upper bound is never binding in the sense that n � n∗(z, ϕ). In our estimation, we
assume n = 50.

26



and the search cost for inactive buyers, respectively. In addition, we must set values for the

persistence and dispersion parameters of the exogenous productivity state process: (ρz, σz).

We assume that z can take up to kz = 25 different values, and normalize its mean to unity.

We do not estimate the aggregate shocks ϕ because the spirit of our calibration exercise is

to estimate an economy in its long-run equilibrium. These will be re-introduced in Section

5, when we study the response of markups to aggregate supply and demand shocks.

External identification The parameters (v, r, δc) are calibrated outside the model. The

value of consumption is normalized to v = 1, so that the consumption good serves as the

numeraire of the economy. The discount rate is set to r = 0.05, corresponding to a discount

factor of approximately 95% annually. The exogenous separation probability is set to match a

0.044% weekly customer turnover rate (corresponding to δc ≈ 0.2041 at our yearly frequency),

which implies that customer relationships last a bit more than 4 and a half years on average.

We borrow this value from Paciello et al. (2017), who estimated it on the same IRI data

we use here. The number falls within the range of values reported by Gourio and Rudanko

(2014b) (between 10% and 25% annually).

Internal identification Because of the high non-linearity of the model, identifying each

of the remaining parameters separately is unfeasible. However, we can provide some intuition

for how each one is informative about specific moments. We estimate the parameters jointly

by matching a combination of aggregate and seller-level moments via simulated method of

moments (SMM). To implement this procedure, we use an algorithm that randomly searches

in the parameter space, and then employs an unweighted minimum-distance criterion func-

tion that compares empirical moments to model-implied moments from both the stationary

solution as well as simulated data.

For the stationary solution, we solve a fixed-point algorithm that uses value function

iteration on W and a bisection procedure to solve for the value of inactivity, UB. Appendix

E.2 outlines the details of this method.30 To obtain moments from simulated data, we

generate histories for many distinct sellers over T = 100 years of data which we discretize

with time steps of equidistant length ∆ = 0.01 each. All sellers are drawn from the stationary

distribution at time t = 0 and evolve endogenously through simulated Markov chains that

replicate the dynamics described in Section 2.5. We drop the first half of the time series

when computing average simulated moments to make sure we draw from the stationary

distribution. For the entrants’ productivity distribution πz, we use the ergodic distribution

implied by the calibrated Markov chain for z.

The set of targeted moments can be grouped into two broad categories: (i) aggregate

moments, and (ii) store-level moments related to the distribution of sales and prices. At the

aggregate level, we target an average annual entry rate of 8.9%, which we compute for our

30 Further, in Appendix F.3 we show that, for a given UB , W has a unique fixed point, and therefore the VFI
method is convergent.
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IRI sample as the average across years 2001-2007 of the ratio of stores aged 52 weeks or less

to the total number of existing stores within that year. We define the entry rate in the model

as the ratio of actual entrants to the total mass of incumbents. The exit rate is the measure

of sellers who either die or lose their last remaining customer. By equation (21), this means:

EntryRate =
S0∑

n,z Sn(z)

∑
z0∈Z

πz(z0)η
(
θ1(z0)

)
; ExitRate = δf + δc

∑
z S1(z)∑
n,z Sn(z)

(27)

These formulas hold in and out of steady state, but are equal to each other in the absence

of ϕ-shocks, so the entry rate in the data helps us identify the exogenous exit rate δf in the

model. At the aggregate level, we also target the cross-sectional average markup. Because

measuring markups in the data usually requires a stand on market structure and the demand

curve faced by firms, in the literature estimates vary substantially depending on the empirical

methodology used, the industry of consideration, and the overall sample. Using firm-level

data, typical estimates range from about 10% to as much as 50% or more.31 We choose to

target a markup of 39%, a number that we impute from the average ratio over our sample

period (2001-2007) of gross margins to sales in the retail sector.32 To be consistent with the

empirical target, in the model we compute measured markups as the sales-weighted average

of the ratio of price to marginal cost:

m =
∑
n∈N

∑
z∈Z

mn(z); with mn(z) ≡ sn(z)
pn(z)

mcn(z)
(28)

where sn(z) = npn(z)∑
n,z npn(z) is the sales share of type (n, z) firms, and mcn(z) ≡ C(n; z) −

C(n − 1; z) is the marginal cost of this type of firms. Though many parameters affect the

average markup, γ is the most relevant one, as it governs how the gains from trade are shared

between the customers and their seller.

At the store level, we target moments from the distribution of prices and sales that we

obtain from our IRI sample. The cost parameters (ψ,w) determine firm profitability across

sizes, so they play an important role in determining the degree by which firms of similar

productivity choose to set different prices for the same product. We choose to target two

moments that relate to this dimension of heterogeneity. First, we target price dispersion

(10.55% in the data). Second, we target the inter-decile range in the distribution of relative

prices between the tenth percentile and the median relative price, equal to 1.1215 (see Table

31 For example, DeLoecker and Warzynski (2012) find that median markups range from 10% to 28% for
Slovenia, depending on the specification, while DeLoecker et al. (2016) find even more variation, from 15% up
to 43%, using similar methods for India. Christopoulou and Vermeulen (2008) report an average markup of
37% for the Euro area, and of 32% for the U.S.
32 We obtain this number from the latest Annual Retail Trade Report of the U.S. Census Bureau
(https://www.census.gov/retail/index.html). The average gross margin is about 28%, implying an average
markup of .28/(1− .28) ≈ .39. For comparison, Hottman (2017) estimates average markups in the U.S. retail
sector and finds slightly lower numbers, in the range 29-33%.
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A.2 in the Appendix). We target this measure of left-tail dispersion because the size distri-

bution is right-skewed, and thus matching the lower end of the distribution will ensure that

we capture the pricing behavior of the bulk of population of sellers.

Next, we need to discipline the parameters of the exogenous productivity process, z. We

target the yearly autocorrelation in normalized store-level sales (pinning down the persistence

ρz), and the dispersion in the distribution of normalized sales (pinning down the volatility

σz). Finally, we need to calibrate the search cost for buyers, c, and the market penetration

cost for sellers, κ. As we discussed in Section 3, these parameters are important to pin down

the dependence between seller size and seller price, which determines two key aspects of

firm dynamics: (i) the growth rate of sellers across sizes; and (ii) the stationary size. For

the former, we target the correlation between store product-level sales growth rates and the

relative price of those products. For the latter, we target the stationary size of sellers in the

data, so that the average size in the model and the data are comparable. In the model, we

measure the average size of firms as the mean number of units sold per firm. Since each

customer consumes only one unit, the average size is (see e.g. Luttmer (2006)):

L =

(∑
n∈N

∑
z∈Z

1

n
Ln(z)

)−1

; with Ln(z) ≡ nSn(z)∑
n,z nSn(z)

(29)

where Ln(z) is the fraction of active buyers that are customers of sellers of type (n, z).

In our sample, the average number of units sold of each product within a store is 12.4 in

volume-equivalent terms,33 so we target this number in the estimation.

Estimation Results

Table 1 presents the full set of calibrated parameters. Table 2 shows the result of the

calibration exercise in terms of moment-matching. The fit is reasonably good. We are able

to match both aggregate entry rates and average markups accurately, as well as the average

and the left-tail dispersion in relative prices. The model slightly under-predicts dispersion

in normalized sales, probably as the result of outliers in the data. On the other hand, the

correlation between sales growth and relative prices in the model is slightly strong relative

to its empirical counterpart. This likely reflects factors attenuating the relationship between

prices and sales that are not captured by the model.34

Figure 4 plots the joint surplus, pricing policy function, measured markups, and promised

utility, in the space of seller sizes (n) and productivities (z), for the calibrated set of parameter

values. We find that matches with more customers and higher productivity levels (i.e. lower

values for z) earn a larger surplus. Moreover, we find that the pricing policy is increasing in

33 The IRI sample provides a conversion system whereby units of different product categories can be made
comparable. We use this standardization for this calculation.
34 To get a visual idea of identification, Figure B.4 in the Appendix plots each calibrated moment against the
distribution across different model simulation runs that results from our parameter-search algorithm. We see
that, with a few exceptions, the calibrated moment is close to the median of this distribution.
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Param. Value Description Source / Target

Calibrated externally

v 1 Value of consumption Normalization

r 0.05 Discount rate 5% annual risk-free rate

δc 0.2041 Separation rate Paciello et al. (2017)

Estimated internally

δf 0.0738 Firm exit rate Annual store entry rate

γ 0.5339 Matching elasticity Average markup

ψ 1.4044 Cost curvature Standard deviation of relative prices

w 0.1510 Cost scale p50-p10 inter-decile range in relative prices

c 0.5457 Buyer search cost Average store size

κ 1.6214 Firm entry cost Sales growth and relative price correlation

ρz 0.0751 Persistence of z Autocorrelation in normalized store sales

σz 0.1034 Volatility of z Dispersion in normalized store sales

Frequency Annual

Table 1: Full set of calibrated parameters in the baseline estimation. Notes: The param-
eters (ρz , σz) correspond to the Euler-Maruyama equation (E.1) of the Ornstein-Uhlenbeck
process for z. See Appendix E.1 for details.

Moment Model Data Data Source

A. Aggregate moments

Annual entry rate 0.087 0.089 IRI

Average markup (2001-07) 1.388 1.383 U.S. Census

B. Store-level moments

sd(Relative prices) 0.1072 0.1055 IRI (Table A.1)

p50-p10 IDR relative prices 1.1224 1.1215 IRI (Table A.1)

Average store size 10.73 12.44 IRI

corr(Sales growth, Relative price) –0.023 –0.007 IRI

ac(Normalizes sales) 0.854 0.828 IRI

sd(Normalized sales) 0.6 0.474 IRI

Table 2: Targeted moments: model versus data. Notes: Average markup is weighted by
sales shares. IDR means inter-decile range. sd, corr, and ac mean “standard deviation”,
“correlation”, and “autocorrelation”, respectively.
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promised utility, in the (n, z) space, for the calibrated set of parameters. Higher values of z
mean higher costs per customer (i.e. lower productivity).

the size of the customer base, and decreasing in productivity. Even though marginal costs are

higher for larger firms (as ψ > 1), measured markups are still increasing in size. In Figure 5

we plot the distribution of normalized sales and that of the seller’s customer base that result

from the simulation of the estimated model. The figure demonstrates that our model can

generate an invariant size distribution with a fat right-tail in both seller revenues and output

that resembles its empirical counterpart (see Figure A.1 in the Appendix). We also show

(panel (c)) the age distribution, to demonstrate that most small sellers in the economy are

young.
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Figure 5: Sales, customer, and seller age distributions, for the simulated economy under
the calibrated set of parameters. Sales have been normalized by their mean.
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Validation

To validate the results of our calibration, we assess the model’s performance on non-

targeted moments. We look at two sets of moments. First, we check the model’s performance

on other measures of relative price dispersion, namely inter-decile ranges between the first

and ninth deciles, and fifth and ninth deciles. The results are in Panel A of Table 3. The

model’s predictions regarding these measures are in line with the microdata.

We also look at the model’s ability to generate a quantitatively correct behavior of price

changes. For this exercise, in the model we compute micro-price statistics along the station-

ary solution using the formulas derived in Appendix G. In the data, we define the weekly

frequency of price changes within a store and market of interest as the share of goods sold by

that store in that week that experience a price change.35 For the moments of the distribu-

tion of price changes, we look at the absolute value of log differences. Finally, we annualize

frequencies and rates in the model and the data.

Moment Model Data

A. Distribution of Relative Prices

p90-p10 range 1.1994 1.2504

p90-p50 range 1.0508 1.1149

B. Distribution of Price Changes

Average frequency 0.9639 0.9609 annualized

Median frequency 0.9814 0.9264 annualized

Average implied duration 0.2788 0.7817 years

Median implied duration 0.2503 0.3568 years

Average absolute change 0.0305 0.0313 log-points

Median absolute change 0.0312 0.0197 log-points

St. Dev. absolute change 0.0505 0.1415 %-points

Table 3: Non-targeted moments: model vs. data. Notes: Data moments are taken from
our IRI sample. See Appendix G for the calculation and aggregation of firm-level price
statistics in the model.

Panel B in Table 3 reports the simulated moments and their empirical counterparts. The

calibrated model does a good job in predicting the empirical frequency of price changes, even

though these moments were not targeted. The model predicts relatively well the median price

duration, though the average duration is not accurately predicted because the distribution

35 We focus only on regular price changes, which we define (following Coibion et al. (2015)) as changes in prices
that are larger than 1% or $0.01 in absolute value for products that are neither entering nor coming out of
promotion, and whose initial price is less than, or equal to, $5. For non-promotional goods with initial prices
higher than $5, this threshold 0.5%. These criteria eliminate small price changes that may be due to rounding
or reporting errors. Promotional goods are flagged by the IRI directly. In order to filter out temporary price
reductions that may not have been flagged, we also exclude changes that return to their initial level within 3
weeks after the initial change.
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of price durations in the model is not sufficiently skewed.36 The model also predicts several

moments of the distribution of expected price changes, especially the average price change

and the median. We can explain about one third of the dispersion in the size of price changes,

even though the model was not calibrated for this purpose. Figure B.3 in Appendix B shows

how these measures of price changes vary across firm size, with smaller firms experiencing

more frequent and larger price changes.

5 The Response to Aggregate Shocks

In this section, we analyze the impact of aggregate supply and demand shocks at both

the macroeconomic level as well as in the cross-section of firms using the estimated model.

We seek to understand how sellers’ incentives to accumulate customers can generate ampli-

fication and persistence through both level and distributional effects, generate incomplete

pass-through on prices, and imply procyclicality in markups.37

Because the equilibrium is block-recursive, aggregate dynamics in the model are inter-

nalized by agents, so the shocks and their aftermath are fully anticipated. This makes the

shocks akin to business cycles fluctuations.

Supply Shocks

Starting from the stationary equilibrium of the calibrated economy, we study the response

to a temporary negative 1% supply shock to the marginal cost. The aggregate state ϕ follows

a mean-reverting process in logs (details in Appendix E.1). The shock hits at some time t0,

and the process continues without further shocks for t > t0. Figure 6 presents the results.

The response of the economy to the aggregate shock combines both level and compositional

effects. Let us describe each of these in detail.

First, due to an increase in the cost of serving each customer (panel (a)), the flow payoff

in joint surplus falls on impact (panel (b)). To mitigate the effects on their own profits, sellers

lower the continuation utility that they promise to deliver to each customer going forward

(panel (c)). Thus, active buyers are hit harder by the shock than sellers. As a result, firms

attract less inactive buyers, for ex-ante values from matching have lowered. The average

tightness in the market falls (panel (d)), and with it firm growth. Interestingly, while prices

increase in response to the shock, the pass-through is incomplete (panel (e)). The increase in

prices is due to the fact that, when faced with an adverse shock to their costs, sellers choose to

re-balance their contracts by front-loading payments from their buyers. They implement this

by choosing to exploit their customers more today (through a higher price). Yet, to honor

36 To transform frequency f to duration d, we use d = − 1
log(1−f) . See details in Appendix G. For medians, we

apply the formula directly on the median frequency to obtain the median duration. For means, we first use
the formula to compute the implied duration for each store and price, and then take the mean.
37 We call procyclicality the positive comovement between the response of the variable in question and the
measure of active buyers (which equals aggregate output because each buyer consumes one unit).
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their promises, they must choose an increasing path of buyer utilities in the transition. As

the shock is smoothed out inter-temporally via these two contracting instruments, the price

response is muted. In the calibrated economy, in particular, the price response is about 12%

the size of the shock. Note, moreover, that this dynamic re-balancing of payments increases

flow sales in spite of the decrease in the extensive margin of demand, though this increase is

only temporary (panel (f), solid line). Flow profits decrease, in contrast, as the rise in sales

is overwhelmed by the increase in costs (panel (f), dashed line).

Since prices react less than one-for-one, the average measured markup (panel (l), solid

line) falls with output, i.e. it is procyclical. Looking at the response by seller size, we find that

smaller sellers (dashed line) respond stronger on impact, while the largest sellers’ response

(dotted line) is weaker than the average. Similar features have been documented in the data.

For instance, Hong (2017) has found differential responses of markups across firm sizes, with

smaller firms displaying more elastic responses to output shocks. In the model, this occurs

because smaller sellers experience more frequent and larger price changes per unit of time,

since the optimal pricing policy is concave in seller size.

To explain the behavior of measured markups in the transition and in the cross section, we

must first understand the distributional consequences of the shock. First, the rate of inactive

buyers gradually increases (panel (g)), so firms start to shrink on average (panel (h)). These

trends continue for a few periods, until they are eventually reversed by the continued increase

in promised utilities and seller growth rates. In the first phase of the transition, therefore,

the size distribution is gradually shifting to the left. Because measured markups and size

are positively correlated in the calibrated economy, the increase in the relative measure of

small firms means that the contribution of low-markup firms to the aggregate markup is now

relatively more important. Therefore, the persistence of the shock on markups is higher for

smaller sellers, as reflected in the fact that markups take longer to mean-revert for these type

of sellers relative to larger ones.38

To recap, sellers smooth out the effects of the adverse shock inter-temporally by raising

prices imperfectly and depressing promised utilities. For further illustration of this result,

Figure 7 shows how the responses discussed above vary with the average duration of customer

relationships, as measured by δc. In particular, we compare the baseline economy (solid),

with an economy in which the duration of customer relationships is one-third shorter (dashed)

and the remaining parameters remain fixed at their original calibrated values. In line with

our intuition, Figure 7 shows that the response is dampened when customer relationships

are shorter (that is, when δc is higher). This is because, when sellers expect their customers

38 Let us also explain the behavior of the entry and exit rates. First, since the risk of exiting has become
higher for smaller firms, the aggregate exit rate goes up (panel (i)). Interestingly, the entry rate goes up as
well (panel (j)), so much so that the number of inactive sellers decreases (panel (k)). Indeed, in the entry
market the tightness has increased (unlike other markets). This is because, in order to enter into the economy,
potential sellers must raise resources to pay for the fixed market penetration cost, κ. Since inactive buyers’
ex-ante match value has worsen, the seller must now raise the initial promised compensation enough in order
to guarantee that the costs of entry are still being recouped in expectation.
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Figure 7: Impulse responses of selected variables to a negative and temporary 1% shock
to aggregate productivity (i.e. an increase in the marginal cost), for different values of δc.
Notes: See Figure 6.

to remain captive for a shorter time, sellers care more about their immediate profits, so

promised utility needs to decrease less on impact (panel (a)) as these captive buyers are not

expected to remain matched for long. Accordingly, the seller can charge higher prices on

impact (panel (c)), thereby alleviating the adverse effects of the shock on her own valuation

(panel (b)). The effects of the shock on prices and continuation utilities become naturally

less persistent. Finally, since the price pass-through is less incomplete as δc increases, the

absolute response of the average markup (panel (d)) is weaker. In the limit as δc gets very

large, markups would be acyclical to marginal cost shocks, as prices would respond one-for-

one and promised utilities would remain unaffected by the shock.

Demand Shocks

Recent research has emphasized the relevance that consumer shopping behavior may have

on macroeconomic dynamics (e.g. Bai et al. (2017), Petrosky-Nadeau and Wasmer (2015),

Paciello et al. (2017)). In these papers, a shock in demand can have a strong impact on

search incentives, and lead to persistent price responses. In this section, we argue that the

underlying size heterogeneity and the forces of firm entry of our model can provide additional

insights into the response of markups to aggregate demand shocks.

We consider a shock to the instantaneous utility v. We implement a 1% negative shock

to v at time t0, and let the process mean-revert without any further shocks for all t > t0. We

choose an autocorrelation for the ϕ process implying a half life of about three years, following

Paciello et al. (2017) and in line with estimates by Bai et al. (2017).Figure 8 presents the

results. A negative shock to the utility from consumption leads to a decrease in the number

of buyers looking for a seller, since consumption is worth less. Because the buyers’ outside

option has relatively improved, firms lower the promised utility in an attempt to smooth

the effects of the shock. Once again, the burden of the shock is passed almost entirely on

to the customer: the seller’s value decreases only slightly (panel (c), dashed line), and it is

the decrease in the value of the buyer (panel (c), solid line) which accounts for the bulk of
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the drop in joint surplus (panel (b)). Market tightness falls on impact (panel (d)), leading

to a drop in the matching rate which causes sellers to progressively shrink in size (panel

(h)), and more buyers to remain inactive (panel (g)). In this respect, the demand shock is

akin to a productivity shock (Figure 6), in line with the intuition in Bai et al. (2017). The

compositional effects are similar to those in our previous analysis: a left-ward shift in the

firm size distribution, which accounts for the increase in the exit rate and in the relative

contribution of low-markup firms to the average response. However, the behavior of prices

in response to the demand shock is different than before.

First, the incomplete pass-through that we observed for supply shocks, and which was

due to firms optimally tilting their pricing contract toward more immediate payoffs through

higher prices today, is no longer present here. A shock to the marginal propensity to consume

has a one-for-one impact on the extensive margin of demand because of linearity in consumer

preferences. This means that all the adjustment has to be made along promised utilities,

which respond a lot more to the demand shock compared to the case of supply shocks. Sellers

understand the temporary nature of the shock ex-ante, so in the transition they increase their

promises, and seller growth picks up. As before, the size distribution shifts left in a first phase

of the transition, and returns back to its original position in the long-run. Thus, the level

effects of the demand shock are accompanied by interesting compositional effects.

As a result of the demand shock, the relative attractiveness of small firms improves, as

markups decrease relatively more for these firms (see panel (l)). This induces a short-lived

spike in the entry of small seller, and a further downward pressure on prices. In addition, the

entry of (small) sellers causes a surge in the contribution of low-price firms to the aggregate

price level. At the other end of the distribution, the shock decreases the relative mass of large

sellers, which attenuates the markup response for these type of sellers. Thus, the cyclicality

in the response of measured markups is partly explained by compositional shifts in the firm

distribution, whereby the entry of new firms with low prices amplifies the response of the

economy to aggregate shocks.

Summing up, while prices in the model are procyclical after demand shocks and coun-

tercyclical after supply shocks, markups are always procyclical to both supply and demand

shocks. Markup procyclicality is a feature that standard models of price rigidities, such

as the New Keynesian model, have trouble replicating, particularly conditional on demand

shocks. Yet, recent empirical studies tend to rule against countercyclical markup variation

conditional on either type of shock (e.g. Nekarda and Ramey (2013)). We have proposed a

micro-founded mechanism through which this empirical observation can be rationalized as

the optimal response of firms concerned with building up a stock of demand.

The Margins of Price Adjustment

To conclude, we seek to further understand the main margins along which prices adjust

in response to aggregate shocks. For this, we decompose the price response into the response

of the different price components that we identified in equation (15).
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Figure 9: Impulse responses to negative and temporary 1% supply and demand shocks
(same as Figures 6-8). Decomposition of the average price response by the price components
identified in equation (15). Each component is averaged using the theoretical distribution
of sellers across states. The exogenous shock adjustments (last two terms of equation (15))
are not being plotted.

Figure 9 shows the response of each component, for the same supply and demand shocks

introduced above. First, we observe that the “baseline” component of price is a more re-

sponsive in the case of a demand shock, overwhelming the other components, and ultimately

explaining why the overall price response is procyclical after a demand shock. For a supply

shock, this effect is attenuated by the contractual mechanism of incomplete pass-through

explained above. In both cases, the “growth” component is procyclical, while the “exit” and

“separation” components are countercyclical.39

In sum, in response to adverse supply shocks, sellers grow more concerned with expanding

their base (as they offer large price compensation through this margin to generate high rates

of subsequent growth). While this phenomenon is to some also extent present after adverse

demand shocks, in that case prices change primarily because the seller’s current buyers

depress their valuation for consumption.

6 Conclusion

Empirical evidence suggests that a major source of variation in the performance of busi-

nesses stems from heterogeneity in idiosyncratic demand components across firms. Further,

price differences are key to explain revenue differences for firms that operate within the

same product markets and under similar productivity levels. These observations may al-

ter our understanding of how markups behave at the aggregate level. We have presented a

dynamic search model of demand accumulation through pricing with aggregate and idiosyn-

cratic shocks and a relevant scope for firm dynamics in order to study the connection between

39 For the former, the reason is that, even though sellers respond to both types of shocks by cutting promised
utilities, smaller sellers make relatively bigger cuts as demand is more elastic for them. Thus, the relative value
of an additional customer (the object xn+1 − xn) goes up after a negative shock, so sellers overcompensate
customers in their price level for the eventuality of growing.
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customer capital at the microeconomic level and the macroeconomic dynamics of prices. In

the model, sellers of different sizes strategically use menus of prices and continuation promises

in order to trade off two conflicting concerns: attracting new customers to increase future

market share, and extracting surplus from incumbent customers to increase current profits.

The model exhibits cross-sectional price dispersion, and offers a micro-founded interpretation

for sluggish firm- and aggregate- dynamics.

We have analyzed a number of predictions on both pricing and firm dynamics dimensions.

Using product-level data from the U.S. retail sector, we have estimated the model and con-

ducted experiments on the response of the economy to aggregate shocks to productivity and

demand. We have found both level and compositional effects. In response to adverse and

mean-reverting aggregate shocks, sellers inter-temporally smooth out the effects of the shock

on prices by transferring the burden onto their future buyers, giving rise to an incomplete

price response and markup procyclicality. Moreover, we have also shown that smaller sellers

experience stronger and more persistent responses.

Overall, these results suggest that incorporating micro-founded pricing behavior into

quantitative macro models can help us understand certain patterns of macroeconomic dy-

namics and firm heterogeneity. Further investigating how customer markets may help explain

these and other dimensions remains an exciting avenue for future work.
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Appendix

A Data Description

The IRI scanner dataset spans a period of 12 years (from the first week of January 2001 to the

last week of December 2012), and contains revenue and quantity information for over 5,000 retail

(drug and grocery) stores over 50 Metropolitan Statistical Areas (MSA) in the U.S. The data are

automatically generated by retailers through their point-of-sale systems. Products, at the UPC level,

are grouped into broad categories. We narrow our attention to two large geographical markets (New

York and Los Angeles) in the period 2001-2007, and consider 15 product categories.40 We back out

the weekly average price (P ) from revenues (R) and quantities (Q):

Pusm,t =
Rusm,t
Qusm,t

for each UPC u within week t, in store s and (geographic) market m. Throughout, we restrict our

sample to products that are commonly available across stores and not only sold in specific establish-

ments. Given the overall number of stores in our sample, we drop goods sold in less than 10 stores

on any week×market. To eliminate outliers, we drop stores with non-positive sales, transactions with

prices above $100 (accounting for the top .02% of the price distribution in the full sample), and cases

with multiple observations at the store×market×week×UPC level, which we deem as mis-reported

transactions. Finally, in the absence of a theory of price discounts, we focus only on regular prices

by filtering out of the sample products on sale. A convenient feature of the data is that products are

flagged whenever they go on promotion, which means that we need not employ a filtering algorithm

as in Nakamura and Steinsson (2008) but we can rather exclude flagged products directly.41

Full Sample Sub-Sample

Number of product categories 15 15
Number of chains 64 64
Number of stores 278 278
Number of UPCs 19,721 11,483
Stores per chain (average) 27 26
Stores per product (average) 59 88
Products per store (average) 4,180 3,638
Average price (USD) 7.75 8.32
Price dispersion 15.73% 10.55%
Total sales (Billion USD) 2.86 1.60

Number of weeks 365 365
MSAs considered NY, LA NY, LA
Number of observations 89,112,170 59,813,217

Table A.1: Descriptive statistics before and after sample selection. Source: IRI data.

40 The categories are: Beer, Blades, Carbonated Beverages, Cigarettes, Coffee, Cold Cereal, Deodorant, Dia-
pers, Frozen Pizza, Frozen Dinners, Household Cleaners, Hotdogs, Laundry Detergent, Margarine and Butter,
and Mayonnaise.
41 A “promotion” is defined by the IRI as a temporary price reduction of 5% or greater. Sales are quite
unresponsive to the business cycle, as documented by Coibion et al. (2015) for the IRI data, and therefore
excluding should not change our life-cycle results significantly.
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Table A.1 shows some descriptive statistics of our data before and after applying these restrictions.

Price dispersion is measured as the average standard deviation of p̂usm,t (equation (25)) across prod-

ucts, stores, markets, and time. In our full sample, dispersion at the barcode level is high (15.73%),

in line with previous studies using similar micro pricing data from different sources (e.g. Kaplan

and Menzio (2015)). The restricted sample has a lower dispersion (10.55%), as a result of having

eliminated price outliers and uncommon goods. Figure A.1 shows the distribution of relative prices

in our sample, alongside that of normalized sales (the ratio of store-level sales to its mean) and store

sales growth rates. Table A.2 presents summary statistics for these distributions. We see that the

store size distribution has a fat right tail, which accounts for the high dispersion in normalized sales.

Relative Normalized Sales
prices sales growth

Mean 0 1 –.0008
Median .0009 .9087 –.0003
Percentiles

1st –.3257 .2729 –.1905
25th –.0415 .6656 –.0378
75th .0486 1.2281 .0373
90th .1097 1.7029 .0765
99th .2809 2.3819 .1782

Dispersion
St. Dev. .1055 .4744 .0694
p90-p10 range 1.2504 3.6163 1.1661
p90-p50 range 1.1149 1.8740 1.0798
p50-p10 range 1.1215 1.9297 1.0799

Table A.2: Distribution of relative prices, normalized store sales (i.e. the ratio of total
dollar sales within the store to average sales across products sold in the store), and annualized
sales growth rates, across the whole 2001-2007 sample. Source: IRI weekly data.
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Figure A.1: Distribution of normalized store sales (top), store sales growth rates (middle),
and relative prices at the UPC level (bottom) in our final sample. Source: IRI weekly data.
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B Additional Figures

n = 0
(
1, zi

) (
n− 1, zi

) (
n, zi

) (
n+ 1, zi

)

(n, zj)(1, zj)

η
(
θn+1(zi)

)
η
(
θn(zi)

)

δf

δf + δc

πz(zi)η
(
θ1(zi)

)

nδc (n+ 1)δc

λz(zj |zi)λz(zi|zj)λz(zj |zi)λz(zi|zj)

πz(zj)η
(
θ1(zj)

)

Figure B.1: Seller transitional dynamics for a typical incumbent (right-hand side block)
and for entrants (left-hand side block), where ϕ is fixed for expositional ease. Labels on
arrows indicate flow rates.
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Figure B.2: Same as Figure 3, but with a lower value for κ.
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Figure B.3: Hazard rate, frequency, duration, expected price change, and price change
dispersion, as a function of size (n), in the calibrated economy.
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C Omitted Proofs

C.1 Proof of Proposition 1: Joint Surplus Problem

Proof. Denote by ω =
{
p,x′(n′; s′)

}
a generic policy of the typical seller in state (n; z, ϕ), where

p is the price level,

x′(n′; s′) =
{
x′(n+ 1; z, ϕ), x′(n− 1; z, ϕ),

{
x′(n; z′, ϕ) : z′ ∈ Z

}
,
{
x′(n; z, ϕ′) : ϕ′ ∈ Φ

}}
is the set of promised utilities, and x′(n+ 1; z, ϕ) and x′(n− 1; z, ϕ) are the upsizing and downsizing

choices, respectively. Recall that x′(n; z, ϕ) = x by stationarity.

The value of the seller in equilibrium, V S(n, x; z, ϕ), can be written as the maximand on the

right-hand side of (6), evaluated at ω. That is:

V S(n, x; z, ϕ) = max
ω∈Ω

Ṽ S(n; z, ϕ|ω) s.t. x ≤ V B(n,ω; z, ϕ)

where Ṽ S(n; z, ϕ|ω) is given by:42

Ṽ S(n; z, ϕ|ω) ≡ 1

ρ(n; z, ϕ)

[
pn− C(n; z, ϕ) + η

(
θ
(
x′(n+ 1; z, ϕ);ϕ

))
V S
(
n+ 1, x′(n+ 1; z, ϕ); z, ϕ

)
(C.1.1)

+ nδcV
S
(
n− 1, x′(n− 1; z, ϕ); z, ϕ

)
+
∑
z′∈Z

λz(z
′|z)V S

(
n, x′(n; z′, ϕ); z′, ϕ

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)V S
(
n, x′(n; z, ϕ′); z, ϕ′

)]

and we have defined ρ(n; z, ϕ) ≡ r + δf + nδc + η
(
θ(x′(n + 1; z, ϕ);ϕ)

)
as the effective discount

rate of the firm.

From (C.1.1), it is optimal to offer the highest possible price that is consistent with promise-

keeping, for any given policy ω. Indeed, the price has no bearing on the agents’ incentives within the

search market. Therefore, the PK constraint must bind with equality, and we can solve for the price

p such that x = V B(n,ω; z, ϕ) using equation (5):

pPK : x′(n′; s′) 7→
{
v(ϕ)− ρ(n; z, ϕ)x+ δfU

B(ϕ) + η
(
θ
(
x′(n+ 1; z, ϕ);ϕ

))
x′(n+ 1; z, ϕ) (C.1.2)

+ δc

(
UB(ϕ) + (n− 1)x′(n− 1; z, ϕ)

)
+
∑
z′∈Z

λz(z
′|z)x′(n; z′, ϕ) +

∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)x′(n; z, ϕ′)
}

Using the above notation, we can now substitute the price level pPK
(
x′(n′; s′)

)
from (C.1.2) into

the seller’s value (C.1.1). After some straightforward algebra, we obtain:

W̃ (n, x; z, ϕ|ω) =
1

ρ(n; z, ϕ)

[
n

(
v(ϕ) + (δf + δc)U

B(ϕ)

)

42 Here we are arguing by free-entry that Ṽ S(0; ∅, ϕ) = 0, ∀ϕ ∈ Φ, to simplify the expression for Ṽ S . Moreover,
we use that

∑
z′∈Z λz(z

′|z) =
∑
ϕ′∈Φ λϕ(ϕ′|ϕ) = 0.
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−

(
C(n; z, ϕ) + η

(
θ
(
x′(n+ 1; z, ϕ);ϕ

))
x′(n+ 1; z, ϕ)

)
+ η
(
θ
(
x′(n+ 1; z, ϕ);ϕ

))
W
(
n+ 1, x′(n+ 1; z, ϕ); z, ϕ

)
+ nδcW

(
n− 1, x′(n− 1; z, ϕ); z, ϕ

)
+
∑
z′∈Z

λz(z
′|z)W

(
n, x′(n; z′, ϕ); z′, ϕ

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)W
(
n, x′(n; z, ϕ′); z, ϕ′

)]
(C.1.3)

where we have defined:

W̃ (n, x; z, ϕ|ω) ≡ Ṽ S(n; z, ϕ|ω) + nx and W (n, x; z, ϕ) ≡ max
ω∈Ω

W̃ (n, x; z, ϕ|ω)

as the joint surplus under contract ω, and the maximized joint surplus, respectively. Next, note

that the right-hand side of equation (C.1.3) does not depend on x nor p, and so we can write the joint

surplus under a given policy as:

W̃ (n, x; z, ϕ|ω) = W̃n

(
x′(n′; s′); z, ϕ

)
This proves Part 2 of the proposition. Part 1 now readily follows. Since the joint surplus is

invariant to the price level by construction, the optimal contract can be found by splitting the program

into two separate stages. In the first stage, the seller chooses the vector of continuation values x′(n′; s′)

that maximizes (C.1.3). In the second stage, once the surplus has been maximized, the seller chooses

the promise-compatible price level via equation (C.1.2).

Formally, the optimal contract is ω∗ =
{
p∗,x′∗(n′; s′)

}
, where:

x′∗(n′; s′) ≡ arg max
x

W̃n

(
x; z, ϕ

)
(C.1.4a)

p∗ ≡ pPK
(
x′∗(n′; s′)

)
(C.1.4b)

By expressing the problem of the seller in terms of W̃ , we have just shown that the contract that

is optimally chosen by the firm, ω∗, must maximize the joint surplus. Conversely, for any vector

x′(n′; s′) of continuation values that maximizes the joint surplus, there is a price level, given by

p∗ = pPK
(
x′∗(n′; s′)

)
, that maximizes the seller’s value subject to the PK constraint.

Therefore, the seller’s problem (equation (6)) and the joint surplus problem (equations (C.1.4a)-

(C.1.4b)) are equivalent. �

C.2 Proof of Proposition 2: Efficiency

Proof. Consider a benevolent planner that is constrained by the search frictions of the economy

and seeks to maximize aggregate welfare subject to the resource constraints of the economy. The

planner can allocate resources freely, so the problem does not feature contracts or prices. Instead,

we label each market segment directly by its tightness, θ. To simplify notation, it is understood that

time subscripts embody the entire history of aggregate shocks, which is taken to be some arbitrary

path ϕt = (ϕj : j ≤ t) ⊆ Φ.

The planner chooses:

• The tightness in each market segment, Θt ≡
{
θnt,t(zt) : (nt, zt) ∈ N×Z

}
;

51



• Distributions of inactive and active buyers across markets, BI
t ≡

{
BInt,t(zt) : (nt, zt) ∈ N× Z

}
and BA

t ≡
{
BAnt,t(zt) : (nt, zt) ∈ N×Z

}
;

• A measure of potential entrants S0,t;

• A distribution of firms across states, St ≡
{
Snt,t(zt) : (nt, zt) ∈ N×Z

}
.

The planner’s objective is:

max
Θt,B

I
t ,B

A
t

S0,t,St

E0

∫ +∞

0

e−rtWt(ϕt)dt (C.2.1)

where

Wt(ϕt) = −κ(ϕt)S0,t +

+∞∑
nt=1

∑
zt∈Z

[
v(ϕt)B

A
nt,t(zt)− C(nt; zt, ϕt)Snt,t(zt)− c(ϕt)B

I
nt,t(zt)

]

The planner is subject to three sets of constraints. The first one concerns the evolution of the

firm distribution:

∂tS0,t = δf

+∞∑
nt=1

∑
zt∈Z

Snt,t(zt) + δc
∑
zt∈Z

S1,t(zt)−
∑
ze∈Z

πz(z
e)η
(
θ1,t(z

e)
)
S0,t (C.2.2a)

∂tS1,t(zt) = πz(zt)η
(
θ1,t(zt)

)
S0,t + 2δcS2,t(zt) +

∑
z̃ 6=zt

λz(zt|z̃)S1,t(z̃)

−
(
δf + δc + η

(
θ2,t(zt)

)
+
∑
z̃ 6=zt

λz(z̃|zt)
)
S1,t(zt) (C.2.2b)

∀nt ≥ 2 : ∂tSnt,t(zt) = η
(
θnt,t(zt)

)
Snt−1,t(zt) + (nt + 1)δcSnt+1,t(zt) +

∑
z̃ 6=zt

λz(zt|z̃)Snt,t(z̃)

−
(
δf + ntδc + η

(
θnt+1,t(zt)

)
+
∑
z̃ 6=zt

λz(z̃|zt)
)
Snt,t(zt); (C.2.2c)

for all zt ∈ Z, where ze denotes the productivity draw upon entry. The second set of constraints

describes the distribution of buyers across firms at any given time:

∀(nt, zt) ∈ N×Z : BAnt,t(zt) = ntSnt,t(zt) (C.2.3a)

∀(nt, zt) ∈ N×Z : BInt,t(zt) = θnt,t(zt)Snt−1,t(zt) (C.2.3b)

1 =

+∞∑
nt=1

∑
zt∈Z

(
BAnt,t(zt) +BInt,t(zt)

)
(C.2.3c)

Equation (C.2.3a) states that each customer consumes a single unit; equation (C.2.3b) states that

each market segment is in equilibrium, in the sense that the measure of buyers who find a firm in

any given market equals the measure of firms within that market who find a new customer; equation

(C.2.3c) says that every buyer in the economy is in either the active or the inactive state.

Finally, the mass of potential entering firms must be non-negative in any aggregate state:

S0,t ≥ 0 (C.2.4)
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To solve, first we use constraints (C.2.3a) and (C.2.3b) to rewrite (C.2.3c) as:

+∞∑
nt=1

∑
zt∈Z

ntSnt,t(zt) +

+∞∑
nt=1

∑
zt∈Z

θnt+1,t(zt)Snt,t(zt) + S0,t

∑
zt∈Z

θ1,t(zt) = 1 (C.2.5)

Substituting constraints (C.2.3a) and (C.2.3b) into the objective function:

max
Θt,S0,t,St

E0

∫ +∞

0

e−rt

{
−

(
κ(ϕt) + c(ϕt)

∑
zt∈Z

θ1(zt)

)
S0,t + v(ϕt)

+∞∑
nt=1

∑
zt∈Z

ntSnt,t(zt)

−
+∞∑
nt=1

∑
zt∈Z

C(nt; zt, ϕt)Snt,t(zt)− c(ϕt)
+∞∑
nt=1

∑
zt∈Z

θnt+1,t(zt)Snt,t(zt)

}
dt

subject to (C.2.2a), (C.2.2b), (C.2.2c), (C.2.4), and (C.2.5). Conveniently, the variables BI
t and

BA
t have disappeared from the problem. The state vector now only includes measures of firms:

St ≡ [S0,t,St]. The current-value Hamiltonian of the simplified planning problem is:

Ht(Θt;St) ≡ −

(
κ(ϕt) + c(ϕt)

∑
zt∈Z

θ1(zt)

)
S0,t + v(ϕt)

+∞∑
nt=1

∑
zt∈Z

ntSnt,t(zt)

−
+∞∑
nt=1

∑
zt∈Z

C(nt; zt, ϕt)Snt,t(zt)− c(ϕt)
+∞∑
nt=1

∑
zt∈Z

θnt+1,t(zt)Snt,t(zt)

+ φt

[
1−

+∞∑
nt=1

∑
zt∈Z

ntSnt,t(zt)−
+∞∑
nt=1

∑
zt∈Z

θnt+1,t(zt)Snt,t(zt)− S0,t

∑
zt∈Z

θ1,t(zt)

]

+ ψ0,t

[
δf

+∞∑
nt=1

∑
zt∈Z

Snt,t(zt) + δc
∑
zt∈Z

S1,t(zt)−
∑
ze∈Z

πz(z
e)η
(
θ1,t(z

e)
)
S0,t

]

+
∑
zt∈Z

{
ψ1,t(zt)

[
πz(zt)η

(
θ1,t(zt)

)
S0,t + 2δcS2,t(zt) +

∑
z̃ 6=zt

λz(zt|z̃)S1,t(z̃)

−
(
δf + δc + η

(
θ2,t(zt)

)
+
∑
z̃ 6=zt

λz(z̃|zt)
)
S1,t(zt)

]

+

+∞∑
nt=2

ψnt,t(zt)

[
η
(
θnt,t(zt)

)
Snt−1,t(zt) + (nt + 1)δcSnt+1,t(zt) +

∑
z̃ 6=zt

λz(zt|z̃)Snt,t(z̃)

−
(
δf + ntδc + η

(
θnt+1,t(zt)

)
+
∑
z̃ 6=zt

λz(z̃|zt)
)
Snt,t(zt)

]}
+ ϑtS0,t

where ψn,t(z) ≥ 0, n ≥ 1 (respectively, ψ0,t ≥ 0) is the co-state variable on the flow equation

for Sn,t(z) (respectively, S0,t); φt ≥ 0 is the multiplier on (C.2.5); and ϑt ≥ 0 is the multiplier on

the non-negative entry condition, where the corresponding complementary slackness hold. In vector

notation, the necessary conditions for optimality are:

∇ΘHt(Θt;St) = 0

∇SHt(Θt;St) = −∇tψt + rψt
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where ∇ denotes the gradient operator, and ψt is a stacked vector of co-state variables. These

conditions are also sufficient because the Hamiltonian is quasi-concave. Indeed, the objective function

is linear in both control and state variables, and because of Assumption 2 establishing concavity of

η, all the constraints are concave in the control and linear in the states.

Regarding the first set of optimality conditions, for given zt ∈ Z we have:

[θ1] : φt + c(ϕt) =
(
ψ1,t(zt)− ψ0,t

)
πz(zt)

∂η(θ)

∂θ

∣∣∣
θ=θ1,t(zt)

(C.2.6a)

[θn : n ≥ 2] : φt + c(ϕt) =
(
ψnt,t(zt)− ψnt−1,t(zt)

)∂η(θ)

∂θ

∣∣∣
θ=θnt,t(zt)

(C.2.6b)

As for the second set of conditions, we have:

[S0] : −∂tψ0,t + rψ0,t = −κ(ϕt)−
(
φt + c(ϕt)

) ∑
zt∈Z

θ1(zt) (C.2.7a)

+
∑
ze∈Z

πz(z
e)η
(
θ1,t(z

e)
)
ψ1,t(z

e)− ψ0,t

∑
ze∈Z

πz(z
e)η
(
θ1,t(z

e)
)

+ ϑt

[Snt(zt)] : −∂tψnt,t(zt) + rψnt,t(zt) = nt
(
v(ϕt)− φt

)
−
(
φt + c(ϕt)

)
θnt+1,t(zt)− C(nt, zt;ϕt)

+ δf

(
ψ0,t − ψnt,t(zt)

)
+ ntδc

(
ψnt−1,t(zt)− ψnt,t(zt)

)
(C.2.7b)

+ η
(
θnt+1(zt)

)(
ψnt+1,t(zt)− ψnt,t(zt)

)
+
∑
z̃∈Z

λz(z̃|zt)
(
ψnt,t(z̃)− ψnt,t(zt)

)
for given zt ∈ Z, where in the last line we have used that λz(z|z) = −

∑
z̃ 6=z λz(z̃|z) for all z ∈ Z,

by the properties of the Markov chain.

We now show that a block-recursive equilibrium with non-negative entry of firms satisfies the

optimality conditions of the planner by appropriately choosing the co-state variables of the planning

problem. By equations (C.2.7a)-(C.2.7b), the co-state variables can be represented as HJB equations.

Equations (C.2.6a)-(C.2.6b) are the corresponding first order conditions of those equations. Therefore,

it suffices to find the values of the multipliers for which the HJB equations of the planner coincide

with the joint surplus problem of the decentralized allocation.

Pick a decentralized equilibrium allocation
{
Wn(z, ϕ), xn(z, ϕ), θn(z, ϕ), UB(ϕ) : (n, z, ϕ) ∈ N ×

Z × Φ
}

, and consider the following realization for the multipliers:

φt(ϕ
t) = rUB(ϕt)

ψ0,t(ϕ
t) = 0

∀nt, zt : ψnt,t(zt, ϕ
t) = Wnt(zt, ϕt)− ntUB(ϕt)

Under this guess, notice that ∂tψ0,t = ∂tψn,t(zt) = 0, ∀n ≥ 1. Moreover, the multipliers depend

only on the current realization of the aggregate state, and not the entire history. Further, for a

sufficiently low value of κ, we can impose strictly positive entry and therefore ϑt = 0, ∀t.
Plugging these guesses into (C.2.7b), after some simple algebra we obtain:

(r + δf )Wnt(zt, ϕt) = nt

(
v(ϕt) + (δf + δc)U

B(ϕt)
)
− C(nt, zt;ϕt)
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−
[(
rUB(ϕt) + c(ϕt)

)
θnt+1,t(zt) + η

(
θnt+1(zt)

)
UB(ϕt)

]
+ ntδc

(
Wnt−1(zt, ϕt)−Wnt(zt, ϕt)

)
+ η
(
θnt+1(zt)

)(
Wnt+1(zt, ϕt)−Wnt(zt, ϕt)

)
+
∑
z̃∈Z

λz(z̃|zt)
(
Wnt(z̃, ϕt)−Wnt(zt, ϕt)

)
The last equation resembles the maximized HJB equation for the joint surplus (equation (10))

except for the second line in square brackets. Using that η(θ) = θµ(θ) and xn+1(z, ϕ) = UB(ϕ) +
rUB(ϕ)+c(ϕ)
µ(θn+1(z,ϕ)) by inactive buyers’ indifference, we obtain:

(
rUB(ϕt) + c(ϕt)

)
θnt+1,t(zt) + η

(
θnt+1(zt)

)
UB(ϕt) = η (θnt+1,t(zt, ϕt))xnt+1,t(zt, ϕt) (C.2.8)

Using this into the above equation and grouping terms, we will then recognize the value of the

joint surplus in the decentralized solution, equation (10).

Similarly, plugging the guess for the multipliers into (C.2.7a), we obtain:

κ(ϕt) = −
(
rUB(ϕt) + c(ϕt)

) ∑
zt∈Z

θ1(zt) +
∑
ze∈Z

πz(z
e)η
(
θ1,t(z

e)
)(
W1(ze)− UB(ϕt)

)
A final manipulation using (C.2.8) again then allows us to obtain the free entry condition in the

decentralized allocation, equation (13).

Summing up, under an appropriate choice of the co-states, the planner’s solution is equivalent to

the problem of the decentralized economy. Hence, the equilibrium is constrained-efficient. �

C.3 Proof of Proposition 3: Joint Surplus Solution

Proof. The equilibrium allocation is composed of sequences:

{
Wn(z, ϕ), xn(z, ϕ), θn(z, ϕ), pn(z, ϕ) : (n, z, ϕ) ∈ N×Z × Φ

}
satisfying equations (10), (11), and (15), where the free entry condition (13) pins down x1 and the

first-order condition (12) pins down xn given xn−1, n ≥ 2, for any ϕ ∈ Φ.

For µ(θ) = θγ−1, γ ∈ (0, 1), equation (11) defines the following equilibrium mapping:

θ : (x;ϕ) 7→
(
x− UB(ϕ)

ΓB(ϕ)

) 1
1−γ

(C.3.1)

Some algebra shows that equation (12) can be written as:

Wn+1(z, ϕ)−Wn(z, ϕ)− xn+1(z, ϕ) =
1− γ
γ

(
xn+1(z, ϕ)− UB(ϕ)

)
(C.3.2)

One can also write this condition as:

xn+1(z, ϕ)− UB(ϕ) = γ
(
Wn+1(z, ϕ)−Wn(z, ϕ)− UB(ϕ)

)
︸ ︷︷ ︸

≡Γn+1(z,ϕ)
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showing that the buyer absorbs a fraction γ of the marginal gains from matching, Γn+1(z, ϕ).

Next, define:

ΓSn(z, ϕ) ≡ (r + δf )Wn(z, ϕ)− πn(z, ϕ) + nδc

(
Wn(z, ϕ)−Wn−1(z, ϕ)

)
− n(δc + δf )UB(ϕ)− Ξn(z, ϕ)

(C.3.3)

where πn(z, ϕ) ≡ nv(ϕ)− C(n; z, ϕ) is the flow joint surplus, and:

Ξn(z, ϕ) ≡
∑
z′∈Z

λz(z
′|z)Wn(z′, ϕ) +

∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)Wn(z, ϕ′)

is the expected value of the joint surplus across exogenous states. Next, note:

ΓSn(z, ϕ) = η
(
θn+1(z, ϕ)

)(
Wn+1(z, ϕ)−Wn(z, ϕ)− xn+1(z, ϕ)

)
=

(
1− γ
γ

)
η
(
θn+1(z, ϕ)

)(
xn+1(z, ϕ)− UB(ϕ)

)
=

(
1− γ
γ

)
θn+1(z, ϕ)ΓB(ϕ)

where the first line uses the HJB equation for the joint surplus (equation (10)), the second line

uses (C.3.2), and the third line uses (C.3.1) and η(θ) = θµ(θ). The right-hand side of the first equality

allows us to interpret ΓS as the expected match surplus for the seller (see main text).

Using the last equality, we have found the market tightness:

θn+1(z, ϕ) =

(
γ

1− γ

)
ΓSn(z, ϕ)

ΓB(ϕ)
(C.3.4)

for all n ≥ 1. Finally, we can write (C.3.2) as:

Wn+1(z, ϕ)−Wn(z, ϕ) = UB(ϕ) +
1

γ

(
xn+1(z, ϕ)− UB(ϕ)

)
= UB(ϕ) +

1

γ
ΓB(ϕ)θn+1(z, ϕ)1−γ

Using (C.3.4) and rearranging terms, we obtain our desired result:

Wn+1(z, ϕ) = Wn(z, ϕ) + UB(ϕ) +

(
ΓB(ϕ)

γ

)γ (
ΓSn(z, ϕ)

1− γ

)1−γ

(C.3.5)

This is a second-order difference equation in n. The boundary conditions are W0 = 0 (as the joint

value is nil when the seller has no customers), and W1 set to satisfy the free entry condition (13). By

(C.3.2), we know that W1 − x1 = (1 − γ)(W1 − UB) and x1 − UB = γ(W1 − UB), and thus we can

write (13) as:

κ(ϕ) = (1− γ)

(
ΓB(ϕ)

γ

) γ
γ−1 ∑

z0∈Z
πz(z0)

(
W1(z0, ϕ)− UB(ϕ)

) 1
1−γ

our desired result. �
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C.4 Proof of Proposition 4: Invariant Distribution

Proof. Let
{
θn(z, ϕ) : (n, z, ϕ) ∈ N × Z × Φ

}
be an equilibrium collection of market tightness

levels, where N = {1, . . . , n}, and n < +∞ is a large integer. In matrix notation, for each aggregate

state ϕ ∈ Φ, equations (19)-(20)-(21) can be written succinctly as:

∂tSt(ϕ) = TϕSt(ϕ) (C.4.1)

where St(ϕ) ≡
(
S0,t(ϕ),S>1,t, . . . ,S

>
n,t

)>
, with Sn,t ≡

(
Sn,t(z1), . . . , Sn,t(zkz )

)>
, and Tϕ is the

partitioned matrix:

Tϕ ≡



t11 δef + δec δef δef · · · δef δef δef

ηe1(ϕ)> D1(ϕ) δ2,c 0kz :kz · · · 0kz :kz 0kz :kz 0kz :kz

0kz :1 η2(ϕ) D2(ϕ) δ3,c · · · 0kz :kz 0kz :kz 0kz :kz

...
...

...
...

. . .
...

...
...

0kz :1 0kz :kz 0kz :kz 0kz :kz · · · Dn−2(ϕ) δn−1,c 0kz :kz

0kz :1 0kz :kz 0kz :kz 0kz :kz · · · ηn−1(ϕ) Dn−1(ϕ) δn,c

0kz :1 0kz :kz 0kz :kz 0kz :kz · · · 0kz :kz ηn(ϕ) Dn(ϕ)


where t11 ≡ −

∑
z πz(z)η(θ1(z, ϕ)) is a scalar, 0p:q denotes a p × q matrix of zeros, and Tϕ is a

K ×K square matrix, where K = 1 + nkz. Further, we have defined the 1× kz row vectors:

δef ≡
(
δf , . . . , δf

)
; δec ≡

(
δc, . . . , δc

)
; ηe1(ϕ) ≡

(
πz(z1)η

(
θ1(z1, ϕ)

)
, . . . , πz(zkz )η

(
θ1(zkz , ϕ)

))
;

and the kz × kz matrices:

∀n = 2, . . . , n : δn,c ≡ diag
(
nδc, . . . , nδc

)
;

ηn(ϕ) ≡ diag
(
η
(
θn(z1, ϕ)

)
, . . . , η

(
θn(zkz , ϕ)

))
;

∀n = 1, . . . , n : Dn(ϕ) ≡


dn(z1, ϕ) λz(z1|z2) . . . λz(z1|zkz )
λz(z2|z1) dn(z2, ϕ) . . . λz(z2|zkz )

...
...

. . .
...

λz(zkz |z1) λz(zkz |z2) . . . dn(zkz , ϕ)


where diag(.) denotes a diagonal matrix, and the diagonal elements of Dn(ϕ) are given by:

dn(zj , ϕ) ≡

−
(
δf + nδc + η

(
θn+1(zj , ϕ)

)
+
∑
` 6=j λz(z`|zj)

)
for n = 1, . . . , n− 1

−
(
δf + nδc +

∑
` 6=j λz(z`|zj)

)
for n = n

System (C.4.1) describes an irreducible Markov chain, as any state (n′, z′) ∈ N ×Z can be reached

almost surely from some (n, z) 6= (n′, z′). Moreover, the Markov chain is aperiodic. These properties,

plus the fact that the state space is finite, guarantee that the Markov chain is ergodic. Therefore, by

Theorem 11.2 of Stokey and Lucas (1989), the system converges to a unique steady-state distribution

S∗(ϕ), for each ϕ ∈ Φ.
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For the analytical characterization, note that the transition matrix Tϕ is constant, so we can solve

the differential equation (C.4.1) directly. The solution is:

St(ϕ) = eTϕtS0(ϕ)

where the initial distribution S0(ϕ) ∈ RK+ is given. To compute eTϕt, consider the eigen-

value decomposition Tϕ = EϕΛϕE−1
ϕ , where Λϕ ≡

(
λ1(ϕ), . . . , λK(ϕ)

)
is the diagonal matrix of

eigenvalues, and Eϕ collects the corresponding eigenvectors. Defining Zt(ϕ) ≡ E−1
ϕ St(ϕ), then

∂tZt(ϕ) = ΛϕZt(ϕ), and because Λϕ is a diagonal matrix, we can solve this differential equation

element-by-element, i.e. ∂tZi,t(ϕ) = λi(ϕ)Zi,t(ϕ) for each i = 1, . . . ,K. This is a simple system of

ODEs with solution:

Zi,t(ϕ) = cie
λi(ϕ)t, i = 1, . . . ,K

where ci ∈ R is the constant of integration. Since St(ϕ) = EϕZt(ϕ), we have obtained:

St(ϕ) =

K∑
i=1

cie
λi(ϕ)tvi (C.4.2)

where vi is the K × 1 eigenvector associated to the i-th eigenvalue. Therefore, the stability of

system (C.4.2) as t→ +∞ depends on the sign of the eigenvalues of Tϕ. The trace of Tϕ is:

tr(Tϕ) =

K∑
i=1

λi(ϕ) = −
kz∑
j=1

πz(zj)η(θ1(zj , ϕ)) +
n∑
n=1

kz∑
j=1

dn(zj) < 0

The trace being unambiguously negative means that there is at least one negative eigenvalue, if not

more. Letting 1 ≤ ` ≤ K denote the number of negative eigenvalues, and re-ordering the eigenvalues

from small to large with no loss of generality, we can then impose cj = 0, ∀j ∈ {`+ 1, `+ 2, . . . ,K},
on equation (C.4.2), and let t→ +∞ to find the stable solution. That is:

S∗(ϕ) = lim
t→+∞

∑̀
j=1

cje
λj(ϕ)tvj ∈ RK+

is the unique invariant distribution of sellers in state ϕ ∈ Φ. �

D Model Extensions

D.1 Endogenous Customer Separations

To introduce customer seller-to-seller transitions, we can model customer search explicitly. While

we assume that there is still an exogenous risk δc > 0 of separation for each customer, additionally we

now add the possibility that customers search, and potentially endogenously separate, while on the

match. We assume that active buyers do not face a cost of search, as they do not discontinue their

consumption when transitioning from one seller to the another.

Introducing this additional dimension into our full model with aggregate shocks is not at all

straightforward. Endogenous buyer transitions across sellers would break the ex-ante indifference

condition among inactive buyers, which in our baseline setting is key to pin down equilibrium market

tightness. In order to preserve the block-recursive structure, one remedy would be to assume free
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entry across all markets on the seller side. This would change the environment substantially, so we

leave it for future work.

Thus, suppose there are no aggregate shocks. The problem of an active buyer with value V B is:

max
x∈[V B ,x]

µ(θ(x))
(
x− V B

)
Note that the matched buyer only considers offers that deliver an expected value that weakly

dominates the current perceived utility, V B . Let x̂(n,ω; z) be the policy for a customer in a firm of

type (n, z) under contract ω. The first-order condition reads:

(
x̂(n,ω; z)− V B(n,ω; z)

)∂µ(θ(x))

∂x

∣∣∣∣
x=x̂(n,ω;z)

= −µ
(
θ
(
x̂(n,ω; z)

))
(D.1.1)

Intuitively, the inactive buyer trades off the expected option value of transitioning (left-hand side)

to the rate at which this offer can be obtained (right-hand side). Since we focus on equilibria in which

market tightness is an increasing function of promised utilities, it is not difficult to show (e.g. Shi

(2009)) that x̂(n,ω; z) is increasing in V B(n,ω; z). In words, the more profitable a match is ex-post,

the higher the offer for which the customer will apply next. Therefore, customers separate according

to their initial state, and climb up the utility ladder. This effect tends to shift the mass of customers

(and therefore sellers) toward higher promised utilities, and thus acts as a countervailing force to the

equilibrium dynamics of the baseline model: when the sellers offering the worst terms of trade lose

customers, they need to start setting up more favorable contracts.

The risk of endogenously losing customers must now be incorporated into the pricing decisions of

sellers. The buyers’ and seller’s HJB equations are then identical to (5) and (6), respectively, except

that we now must replace δc by an “effective” customer separation rate, given by:

δ̂c(n,ω; z) ≡ δc + µ
(
θ
(
x̂(n,ω; z)

))
Likewise, the market tightness must incorporate that the pool of searching buyers is composed of

both inactive as well as active buyers:

θn(z) =
1

Sn−1(z)

(
BIn(z) +BAι(n)(z)

)
for any n ≥ 1, where ι(n) ∈ N is the size of the seller that a customer seeking to transition to a

size-n seller is currently matched with, i.e. the solution to xn(z) = x̂(ι(n),ω; z).

D.2 Price Discrimination

The assumption of no price discrimination across different customers is not key to generate efficient

firm dynamics. We argue that:

• So long as we maintain the assumption of dynamic contracts with commitment, our model still

generates these dynamics as well as cross-sectional price dispersion.

• Allowing for price discrimination leads to equilibrium indeterminacy.

If sellers were to use prices as their only instrument for customer attraction (instead of recur-

sive contracts with price-utility pairs), an equilibrium with price discrimination across customers of

different tenures would look similar to that of Gourio and Rudanko (2014b): firms would attract
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customers by offering an instantaneous discount on the valuation v, and extract all surplus by charg-

ing v immediately after the customer joins the seller, and until separation. However, assuming price

discrimination in our model does not yield this result. This is because sellers must still trade off static

payoffs coming from the current price with dynamic ones coming from the promised utilities.

Importantly, under price discrimination, tractability is preserved along several dimensions:

(i.) The seller’s and the join surplus problem are equivalent;

(ii.) The joint surplus is constant in the distribution of contracts across customers;

(iii.) As a novelty, there is equilibrium price indeterminacy.

Let us discuss these results more formally. First, we must extend our baseline framework to

allow for discrimination across buyers. Let ωi =
{
pi,x

′
i(n
′; s′)

}
be the contract offered to the typical

customer i = 1, . . . , n, which is composed of an individual-specific price level pi, and a personalized

menu of continuation utilities x′i(n
′; s′), one for each n′ ∈ {n− 1, n, n+ 1} and s′ ∈ {(z′, ϕ), (z, ϕ′)}.

A seller is characterized by the collection {xi}ni=1 of outstanding promises, and must choose: (i) a

menu of contracts {ωi}ni=1 for the n current customers; and (ii) a starting promised utility x′0 ∈ R for

the new incoming customer (if there is any).

The HJB equation for the seller now reads:

rV S
(
n,
{
xi
}n
i=1

; z, ϕ
)

= max
x′0,{ωi}ni=1

{
n∑
i=1

pi − C(n; z, ϕ) + δf

(
V S0 (ϕ)− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+ δc

n∑
j=1

(
V S
(
n− 1,

{
x′i(n− 1; z, ϕ)

}n
i=1
\−
{
x′j(n− 1; z, ϕ)

}
; z, ϕ

)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+ η
(
θ(x′0;ϕ)

)(
V S
(
n+ 1,

{
x′i(n+ 1; z, ϕ)

}n
i=1
∪+

{
x′0
}

; z, ϕ
)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+
∑
z′∈Z

λz(z
′|z)
(
V S
(
n,
{
x′i(n; z′, ϕ)

}n
i=1

; z′, ϕ
)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)

(
V S
(
n,
{
x′i(n; z, ϕ′)

}n
i=1

; z, ϕ′
)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))}

where \− and ∪+ are multiset difference and union operators.43 The most important differences

relative to the baseline model (equation (6)) have been highlighted in blue. Note that, now, when

a customer i = 1, . . . , n separates, the vector of promised utilities shrinks in cardinality and the

customers that remain obtain the new promise x′i(n−1; z, ϕ). The firm attracts new buyers by offering

a starting utility x′0 to the entering customer, while delivering the promised level x′i(n + 1; z, ϕ) to

each of the remaining n customers. The promise-keeping constraint now reads:

∀i = 1, . . . , n : xi ≤ V B(n,ωi; z, ϕ)

for all (z, ϕ) ∈ Z × Φ, establishing that the firm commits to each and every customer. We then

solve for the optimal menu of contracts by solving for the joint surplus problem:

Lemma 1 (Joint Surplus Equivalence under Price Discrimination) In the economy with price

discrimination, the seller’s and the joint surplus problems are equivalent:

43 These operators are defined by {a, b, b}\−{b} = {a, b} and {a, b}∪+ {b} = {a, b, b}, and they are needed here
because the vector of promised utilities may contain more than one instance of the same element.
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(i) Given a menu of contracts ωi =
{
pi,x

′
i(n
′; s′)

}
for i = 1, . . . , n that maximize the seller’s value

subject to the promise-keeping constraint,
{
x′i(n

′; s′)
}n
i=1

maximizes:

W
(
n, {xi}ni=1; z, ϕ

)
≡ V S

(
n, {xi}ni=1; z, ϕ

)
+

n∑
i=1

xi;

(ii) Conversely, for every
{
x′i(n

′; s′)
}n
i=1

that maximizes W
(
n, {xi}ni=1; z, ϕ

)
, there exists a menu of

personalized price levels
{
pi
}n
i=1

such that the collection
{
pi,x

′
i(n
′; s′)

}n
i=1

constitutes a solution

to the seller’s problem.

Proof. The argument is conceptually similar to that of the baseline model (see Appendix C.1).

Let
{
x′0,
{
ωi
}n
i=1

}
be a generic policy for the firm, with ωi ≡

{
pi,x

′
i(n
′; s′)

}
and x′i(n

′; s′) =
{
x′i(n+

1; z, ϕ), x′i(n − 1; z, ϕ), {x′i(n; z′, ϕ) : z′ ∈ Z}, {x′i(n; z, ϕ′) : ϕ′ ∈ Φ}
}

, for i = 1, . . . , n. The firm’s

problem can be written as:

V S
(
n,
{
xi
}n
i=1

; z, ϕ
)
≡ max
x′0,{ωi}ni=1

Ṽ S
(
n;x′0,

{
ωi
}n
i=1

; z, ϕ
)

s.t. xi ≤ V B(n,ωi; z, ϕ),∀i = 1, . . . , n

where:

Ṽ S
(
n;x′0,

{
ωi
}n
i=1

; z, ϕ
)
≡ 1

ρ(n; z, ϕ)

[
n∑
i=1

pi − C(n; z, ϕ) (D.2.1)

+ δc

n∑
j=1

V S
(
n− 1,

{
x′i(n− 1; z, ϕ)

}n
i=1
\−
{
x′j(n− 1; z, ϕ)

}
; z, ϕ

)
+ η
(
θ(x′0;ϕ)

)
V S
(
n+ 1,

{
x′i(n+ 1; z, ϕ)

}n
i=1
∪+

{
x′0
}

; z, ϕ
)

+
∑
z′∈Z

λz(z
′|z)V S

(
n,
{
x′i(n; z′, ϕ)

}n
i=1

; z′, ϕ
)

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)V S
(
n,
{
x′i(n; z, ϕ′)

}n
i=1

; z, ϕ′
)]

is the value of the seller, with ρ(n; z, ϕ) ≡ r + δf + nδc + η
(
θ(x′0;ϕ)

)
being the effective discount

rate. The value of buyer i = 1, . . . , n under this policy is:

rV B(n,ωi; z, ϕ) = v(ϕ)− pi + (δf + δc)
(
UB(ϕ)− V B(n,ωi; z, ϕ)

)
+ (n− 1)δc

(
x′i(n− 1; z, ϕ)− V B(n,ωi; z, ϕ)

)
+ η
(
θ(x′0;ϕ)

)(
x′i(n+ 1; z, ϕ)− V B(n,ωi; z, ϕ)

)
+
∑
z′∈Z

λz(z
′|z)
(
x′i(n; z′, ϕ)− V B(n,ωi; z, ϕ)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
x′i(n; z, ϕ′)− V B(n,ωi; z, ϕ)

)
Notice that the firm is re-optimizing after changing size. By monotonicity of preferences, the

promise-keeping constraint will bind for each customer:
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xi = V B(n,ωi; z, ϕ), ∀i = 1, . . . , n

From this equation, we can solve for the promise-compatible price level to be charged to each

customer under the policy
{
x′0,
{
ωi
}n
i=1

}
:

pPKi

({
x′0, {x′j(n′; s′)}nj=1

})
= v(ϕ)− ρ(n; z, ϕ)xi + δfU

B(ϕ) (D.2.2)

+ δc

(
UB(ϕ) + (n− 1)x′i(n− 1; z, ϕ)

)
+ η
(
θ(x′0);ϕ

)
x′i(n+ 1; z, ϕ)

+
∑
z′∈Z

λz(z
′|z)x′i(n; z′, ϕ) +

∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)x′i(n; z, ϕ′)

Importantly, note that the price level for a specific customer i is independent of the distribution

of utilities for all the other customers, that is:

pPKi

({
x′0, {x′j(n′; s′)}j 6=i

}
∪+ {x′i(n′; s′)}

)
= pPKi

({
x′0, {x′φ(j)(n

′; s′)}φ(j)6=i
}
∪+ {x′i(n′; s′)}

)
for any arbitrary bisection φ : {1, . . . , n} → {1, . . . , n}. Therefore, since the firm’s problem

internalizes the price level, the resulting maximization should be independent of the distribution of

utilities. Indeed, plugging (D.2.2) into (D.2.1) and rearranging terms yields:

W̃
(
n,
{
xi
}n
i=1

;x′0,
{
ωi
}n
i=1

;z, ϕ
)
≡ 1

ρ(n; z, ϕ)

[
n
(
v(ϕ) + (δf + δc)U

B(ϕ)
)

(D.2.3)

−
(
C(n; z, ϕ) + η

(
θ(x′0;ϕ)

) n∑
i=1

x′i(n+ 1; z, ϕ)

)

+ δc

n∑
j=1

W
(
n− 1,

{
x′i(n− 1; z, ϕ)

}n
i=1
\−
{
x′j(n− 1; z, ϕ)

}
; z, ϕ

)
+ η
(
θ(x′0;ϕ)

)
W
(
n+ 1,

{
x′i(n+ 1)

}n
i=1
∪+

{
x′0
}

; z, ϕ
)

+
∑
z′∈Z

λz(z
′|z)W

(
n,
{
x′i(n; z′, ϕ)

}n
i=1

; z′, ϕ
)

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)W
(
n,
{
x′i(n; z, ϕ′)

}n
i=1

; z, ϕ′
)]

where we have defined:

W̃
(
n,
{
xi
}n
i=1

;x′0,
{
ωi
}n
i=1

; z, ϕ
)
≡ Ṽ S

(
n;x′0,

{
ωi
}n
i=1

; z, ϕ
)

+

n∑
i=1

xi

and:

W
(
n,
{
xi
}n
i=1

; z, ϕ
)
≡ max
x′0,{ωi}ni=1

W̃
(
n,
{
xi
}n
i=1

;x′0,
{
ωi
}n
i=1

; z, ϕ
)

as the joint surplus under policy
{
x′0, {ωi}ni=1

}
, and the maximized joint surplus, respectively.
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Finally, noting that the right-hand side of (D.2.3) does not depend on the initial distribution of

utilities {xi}ni=1 nor the price level, we can write the joint surplus under a given policy as:

W̃
(
n,
{
xi
}n
i=1

;x′0,
{
ωi
}n
i=1

; z, ϕ
)

= W̃n

(
x′0,
{
x′i(n

′; s′)
}n
i=1

; z, ϕ
)

This allows us to break up the optimal contracting problem into two separate stages. Where{
x′∗0 , {p∗i ,x′∗i (n′; s′)}ni=1

}
denotes an optimal contract, we have:

{
x′∗0 , {x′∗i (n′; s′)}ni=1

}
= arg max W̃n

(
x′0,
{
x′i(n

′; s′)
}n
i=1

; z, ϕ
)

p∗i = pPKi

({
x′∗0 , {x′∗j (n′; s′)}nj=1

})
, ∀i = 1, . . . , n

Thus, the joint surplus and the seller’s problems are equivalent. �

The characterization of the equilibrium is also similar to the baseline model. First, by utility-

invariance of the joint surplus we can write:

∀(n, z, ϕ) ∈ N×Z × Φ : Wn(z, ϕ) = W
(
n,
{
xi
}n
i=1

; z, ϕ
)

(D.2.4)

Letting
{
x′0, {x′i,n+1(z, ϕ)}ni=1

}
be the set of optimal policies, the joint surplus solves the second-

order difference equation:

(r + δf )Wn(z, ϕ) =nv(ϕ)− C(n; z, ϕ) + n(δf + δc)U
B(ϕ)

+ η
(
θ(x′0;ϕ)

)(
Wn+1(z, ϕ)−Wn(z, ϕ)−

n∑
i=1

x′i,n+1(z, ϕ)
)

+ nδc
(
Wn−1(z, ϕ)−Wn(z, ϕ)

)
+
∑
z′∈Z

λz(z
′|z)
(
Wn(z′, ϕ)−Wn(z, ϕ)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
Wn(z, ϕ′)−Wn(z, ϕ)

)

Thus, only the aggregate utility
∑n
i=1 x

′
i,n+1(z, ϕ) is relevant from a joint-surplus perspective, so

there is now a multiplicity of contracts that can be sustained in the optimal allocation.44 This is

stated formally in the following lemma:

Lemma 2 (Price Indeterminacy) There is a continuum of joint-surplus-maximizing contracts
{
p∗i ,x

′∗
i (n′; s′)

}n
i=1

that leave both the buyers and the seller indifferent.

Proof. Pick ε ∈ R arbitrarily. The goal of the proof is to show that there is some βn(ϕ) > 0

(possibly a function of size and the aggregate state) for which, if a given contract with ωb =
{
pi +

εβn(ϕ),x′i(n
′; s′) + ε

}n
i=1

is optimal, then each customer and the seller maximize their value under

contract ωa =
{
pi,x

′
i(n
′; s′)

}n
i=1

. The value of contract ωbi for customer i = 1, . . . , n is:

rV B(n,ωbi ; z, ϕ) = v(ϕ)− pi − εβn(ϕ) + (δf + δc)
(
UB(ϕ)− V B(n,ωi; z, ϕ)

)
44 Additional equilibria may exist in non-Markovian environments. Here we only point out that equilibrium
uniqueness is lost in Markov Perfect equilibria when sellers can discriminate.
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+ (n− 1)δc

(
x′i(n− 1; z, ϕ) + ε− V B(n,ωbi ; z, ϕ)

)
+ η
(
θ(x′0(ϕ);ϕ)

)(
x′i(n+ 1; z, ϕ) + ε− V B(n,ωbi ; z, ϕ)

)
+
∑
z′∈Z

λz(z
′|z)
(
x′i(n; z′, ϕ) + ε− V B(n,ωi; z, ϕ)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
x′i(n; z, ϕ′) + ε− V B(n,ωi; z, ϕ)

)
= v(ϕ)− pi − ε

(
βn(ϕ)− (n− 1)δc − η

(
θ(x′0(ϕ);ϕ)

))
+ (δf + δc)

(
UB(ϕ)− V B(n,ωbi ; z, ϕ)

)
+ (n− 1)δc

(
x′i(n− 1; z, ϕ)− V B(n,ωbi ; z, ϕ)

)
+ η
(
θ(x′0(ϕ);ϕ)

)(
x′i(n+ 1; z, ϕ)− V B(n,ωbi ; z, ϕ)

)
+
∑
z′∈Z

λz(z
′|z)
(
x′i(n; z′, ϕ)− V B(n,ωbi ; z, ϕ)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
x′i(n; z, ϕ′)− V B(n,ωbi ; z, ϕ)

)
= rV B(n,ωai ; z, ϕ) + ε

(
βn(ϕ)− (n− 1)δc − η

(
θ(x′0(ϕ);ϕ)

))
Thus, V B(n,ωai ) = V B(n,ωbi ) if, and only if:

βn(ϕ) = (n− 1)δc + η
(
θ(x′0(ϕ);ϕ)

)
(D.2.5)

As for the seller’s value, note that:

rV S
(
n,
{
xi
}n
i=1

; z, ϕ
)

= max
x′0(ϕ),{ωi}ni=1

{
n∑
i=1

pi + nεβn(ϕ)− C(n; z, ϕ)

+ δf

(
V S0 (ϕ)− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+ δc

n∑
j=1

(
V S
(
n− 1,

{
x′i(n− 1; z, ϕ) + ε

}n
i=1
\−
{
x′j(n− 1; z, ϕ) + ε

}
; z, ϕ

)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+ η
(
θ(x′0(ϕ);ϕ)

)(
V S
(
n+ 1,

{
x′i(n+ 1; z, ϕ) + ε

}n
i=1
∪+

{
x′0(ϕ)

}
; z, ϕ

)
− V S

(
n, {xi}ni=1; z, ϕ

))
+
∑
z′∈Z

λz(z
′|z)
(
V S
(
n,
{
x′i(n; z′, ϕ) + ε

}n
i=1

; z′, ϕ
)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)

(
V S
(
n,
{
x′i(n; z, ϕ′) + ε

}n
i=1

; z, ϕ′
)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))}

= max
x′0(ϕ),{ωi}ni=1

{
n∑
i=1

pi + nεβn(ϕ)− C(n; z, ϕ) + δf

(
V S0 (ϕ)− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+ δc

n∑
j=1

(
Wn−1(z, ϕ)−

∑
i 6=j

x′i(n− 1; z, ϕ)− (n− 1)ε− V S
(
n,
{
xi
}n
i=1

; z, ϕ
))
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+ η
(
θ(x′0(ϕ);ϕ)

)(
Wn+1(z, ϕ)−

n∑
i=1

x′i(n+ 1; z, ϕ)− x′0 − nε

− V S
(
n, {xi}ni=1; z, ϕ

))
+
∑
z′∈Z

λz(z
′|z)
(
Wn(z′, ϕ)−

n∑
i=1

x′i(n; z′, ϕ)− nε− V S
(
n,
{
xi
}n
i=1

; z, ϕ
))

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)

(
Wn(z, ϕ′)−

n∑
i=1

x′i(n; z, ϕ′)− nε− V S
(
n,
{
xi
}n
i=1

; z, ϕ
))}

= rV S
(
n,
{
xi
}n
i=1

; z, ϕ
)

+ nε
(
βn(ϕ)− (n− 1)δc − η

(
θ(x′0(ϕ);ϕ)

))
= rV S

(
n,
{
xi
}n
i=1

; z, ϕ
)

where we have used the definition of W in the second equality, and equation (D.2.5) in the last

one. In sum, contract {ωai }ni=1 is optimal if, and only if, {ωbi }ni=1 is optimal. Generally, these is a

continuum of optimal contracts, indexed by ε. �
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E Numerical Appendix

E.1 Numerical Implementation of the Exogenous Processes

This appendix shows how to parametrize and estimate (z, ϕ) as continuous-time Markov chain

(CTMC) processes. The same identical structure applies to both shocks, so let us consider for instance

the idiosyncratic shock (z).

The kz × kz infinitesimal generator matrix Λz to be estimated is:

Λz =


−
∑
j 6=1 λ1j λ12 . . . λ1kz

λ21 −
∑
j 6=2 λ2j . . . λ2kz

...
...

. . .
...

λkz1 λkz2 . . . −
∑
j 6=kz λkzj


where λij is short-hand for λz(zj |zi), zi, zj ∈ Z. Since this level of generality would require

the estimation of a large number kz(kz − 1) of transition rates, we reduce the parameter space by

specializing the CTMC as follows:

• First, we assume z follows a driftless Ornstein-Uhlenbeck (OU) process in logs. An OU process

is a type of mean-reverting and autoregressive CTMC which can be loosely viewed as the

continuous-time analogue of an AR(1). Formally:

d log zt = −ρz log ztdt+ σzdBt

where Bt is a standard Brownian motion, and ρz, σz > 0 are parameters.

• Operationally, in the numerical version of the model in which time is partitioned and takes

values in T = {∆, 2∆, 3∆, . . . }, we use the Euler-Maruyama method, that is:

log zk = (1− ρz∆) log zk−1 + σz
√

∆εzk, εzk ∼ iid N (0, 1) (E.1)

for each k ∈ T. This is now an AR(1) processes with autocorrelation ρ̃z ≡ 1−ρz∆ and variance
σ2
z

ρz(1 + ρ̃z)
. Thus, ρz > 0 can be seen as a measure of mean-reversion, with lower values

corresponding to higher persistence.

• The discrete-time process (E.1) is estimated using the Tauchen (1986) with a discrete-state

Markov chain that we define on the theoretical grid, Z. The outcome of this method are

estimates for (ρz, σz), and a transition probability matrix Πz =
(
πij
)
, where πij denotes the

probability of a zi-to-zj transition in the T space.

• For the mapping back into continuous time, we use the fact that, for small enough ∆ > 0,

transition probabilities are well approximated by transition rates in the following sense:

∀i = 1, . . . , kz : πij ≈ λij∆,∀j 6= i and πii ≈ 1−
∑
j 6=i

λij∆

E.2 Stationary Solution Algorithm

To solve for the stationary equilibrium, we implement the following nested procedure:

i



• First, we solve the maximization of the joint surplus function using a value function iteration

(VFI) algorithm, under a guess for UB .

• To update UB , we must check that the free entry condition is satisfied. Combining equations

(3) and (13), we can write the equilibrium free entry condition as:

κ(ϕ) =
∑
z0∈Z

πz(z0)

{
η ◦ µ−1

(
ΓB(ϕ)

x′1(z0, ϕ)− UB(ϕ)

)(
W1(z0, ϕ)− x′1(z0, ϕ)

)}

To find UB , we use a bisection method: increase (or decrease) UB if there are too many (or too

few) entering firms.

Throughout, the state space grid is fixed at N ×Z ×Φ, where N = {1, . . . , n̄}, Z = {zi}kzi=1, and

Φ = {ϕj}
kϕ
j=1. The following describes the steps of the algorithm:

Step 1. Set the counter to k = 0. Choose guesses U (0)(ϕ) and U
(0)

(ϕ) � U (0)(ϕ) for each

ϕ ∈ Φ. Set the value of inactivity to:

UB(0)(ϕ) =
1

2

(
U (0)(ϕ) + U

(0)
(ϕ)
)

Step 2. For any given k ∈ N and n ∈ N , use VFI to find the fixed point W
(k)
n (z, ϕ) of:

(r + δf )W (k)
n (z, ϕ) = n

(
v(ϕ) + (δf + δc)U

B(k)(ϕ)
)
− C(n; z, ϕ)

+ nδc

(
W

(k)
n−1(z, ϕ)−W (k)

n (z, ϕ)
)

+ max
x′n+1

{
η ◦ µ−1

(
ΓB(k)(ϕ)

x′n+1(z, ϕ)− UB(k)(ϕ)

)(
W

(k)
n+1(z, ϕ)−W (k)

n (z, ϕ)− x′n+1

)}
+
∑
z′∈Z

λz(z
′|z)
(
W (k)
n (z′, ϕ)−W (k)

n (z, ϕ)
)

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
W (k)
n (z, ϕ′)−W (k)

n (z, ϕ)
)

where ΓB(k) = c(ϕ) + rUB(k)(ϕ) −
∑
ϕ′∈Φ λϕ(ϕ′|ϕ)

(
UB(k)(ϕ′) − UB(k)(ϕ)

)
. Store

the corresponding policy functions:
{
x
′(k)
n+1(z, ϕ) : (n, z, ϕ) ∈ N × Z × Φ

}
.

Step 3. For each ϕ ∈ Φ, compute the object:

∆(k)(ϕ) ≡ κ(ϕ)−
∑
z0∈Z

πz(z0)

{
η ◦ µ−1

(
ΓB(k)(ϕ)

x
′(k)
1 (z0, ϕ)− UB(k)(ϕ)

)(
W

(k)
1 (z0, ϕ)− x′(k)

1 (z0, ϕ)
)}

Stop if ∆(k)(ϕ) ∈ [−ε, ε], ∀ϕ ∈ Φ, for some small ε > 0. Otherwise, set:

UB(k+1)(ϕ) =
1

2

(
U (k+1)(ϕ) + U

(k+1)
(ϕ)
)

for each ϕ ∈ Φ, where:

(a) If ∆(k)(ϕ) > ε, then U (k+1)(ϕ) = U (k)(ϕ) and U
(k+1)

(ϕ) = UB(k)(ϕ);

(b) If ∆(k)(ϕ) < −ε, then U (k+1)(ϕ) = UB(k)(ϕ) and U
(k+1)

(ϕ) = U
(k)

(ϕ);

and go back to Step 2. with [k]← [k + 1].
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The VFI algorithm of Step 2 is guaranteed to converge because, given a UB , the joint surplus is

a contraction and therefore has a unique fixed point. (For a proof, see Appendix F.3).

F Additional Theoretical Results

F.1 Aggregate Stationary Measures of Agents

To derive aggregate measures, we first must derive the equilibrium shares of agent types. Through-

out, we fix ϕ ∈ Φ. Let gn,t(z) ≡ Sn,t(z)
St , where St ≡

∑
n≥1

∑
z Sn,t(z) is the total measure of

incumbents. After a period of size ∆ > 0, the share of firms of size n ≥ 2 becomes:

gn,t+∆(z) =
[
η
(
θn,t+∆(z, ϕ)

)
∆ + o(∆)

]
gn−1,t(z) + (n+ 1)

[
δc∆ + o(∆)

]
gn+1,t(z) (F.1)

+
∑
z̃ 6=z

[
λz(z|z̃)∆ + o(∆)

]
gn,t(z̃)

+

[
1− δf∆− nδc∆− η

(
θn+1,t+∆(z, ϕ)

)
∆−

∑
z̃ 6=z

λz(z̃|z)∆ + o(∆)

]
gn,t(z)

Subtracting gn,t(z) from both sides of equation (F.1) and dividing by ∆ gives:

gn,t+∆(z)− gn,t(z)
∆

=
[
η
(
θn,t+∆(z, ϕ)

)
+
o(∆)

∆

]
gn−1,t(z) + (n+ 1)

[
δc +

o(∆)

∆

]
gn+1,t(z)

+
∑
z̃ 6=z

[
λz(z|z̃) +

o(∆)

∆

]
gn,t(z̃)

−

[
δf + nδc + η

(
θn+1,t+∆(z, ϕ)

)
+
∑
z̃ 6=z

λz(z̃|z) +
o(∆)

∆

]
gn,t(z)

Taking the limit as ∆→ 0:

∂tgn,t(z) =η
(
θn,t(z, ϕ)

)
gn−1,t(z) + (n+ 1)δcgn+1,t(z)

+
∑
z̃ 6=z

λz(z|z̃)gn,t(z̃)−
(
δf + nδc + η

(
θn+1,t(z, ϕ)

)
+
∑
z̃ 6=z

λz(z̃|z)
)
gn,t(z)

Similarly, when n = 1 we have:

g1,t+∆(z) =
[
πz(z)η

(
θ1,t+∆(z, ϕ)

)
∆ + o(∆)

]S0,t(ϕ)

St
+ 2
[
δc∆ + o(∆)

]
g2,t(z) (F.2)

+
∑
z̃ 6=z

[
λz(z|z̃)∆ + o(∆)

]
g1,t(z̃)

+

[
1− δf∆− δc∆− η

(
θ2,t+∆(z, ϕ)

)
∆−

∑
z̃ 6=z

λz(z̃|z)∆ + o(∆)

]
g1,t(z)

A similar derivation on (F.2) shows that, for n = 1,
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∂tg1,t(z) =πz(z)η
(
θ1,t(z, ϕ)

)S0,t(ϕ)

St
+ 2δcg2,t(z)

+
∑
z̃ 6=z

λz(z|z̃)g1,t(z̃)−
(
δf + δc + η

(
θ2,t(z, ϕ)

)
+
∑
z̃ 6=z

λz(z̃|z)
)
g1,t(z)

It remains to show the law of motion for the measure of potential entrants, S0,t(ϕ). In this case,

for given ϕ, we have:

S0,t+∆(ϕ) =
[
δf∆ + o(∆)

]
St +

[
δc∆ + o(∆)

]∑
z

S1,t(z)

+

[
1−

∑
z0

πz(z0)η
(
θ1,t+∆(z0, ϕ)

)
∆ + o(∆)

]
S0,t(ϕ)

Taking the continuous-time limit in the usual way, we arrive at:

∂tS0,t(ϕ) =
(
δf + δc

∑
z

g1,t(z)
)
St −

∑
z0

πz(z0)η
(
θ1,t(z0, ϕ)

)
S0,t(ϕ)

In the stationary solution, ∂tgn,t(z) = 0 and ∂tS0,t(ϕ) = 0. Then, we obtain a system of second-

order equations which can be solved numerically on the state-space grid, N × Z × Φ. This will

yield a solution for the matrix {gn(z)}n,z, and the share of potential entrants per incumbent firm,

h0(ϕ) ≡ S0(ϕ)/S.

To compute aggregates, use (17) to obtain bAn (z) ≡ BAn (z)
S by:

bAn (z) = ngn(z)

Then, bA ≡ BA/S =
∑+∞
n=1

∑
z ngn(z). On the other hand, from equation (16) we know that

BIn(z, ϕ) = Sθn(z, ϕ)gn−1(z). Therefore, adding across n ≥ 2 yields:

S
+∞∑
n=2

∑
z

θn(z, ϕ)gn−1(z) =

+∞∑
n=2

∑
z

BIn(z, ϕ) = BI −
∑
z

BI1(z, ϕ) = 1−BA −
∑
z

θ1(z, ϕ)S0(ϕ)

Using the definitions above, we can then write:

S =
1−

(
bA + h0(ϕ)

∑
z θ1(z, ϕ)

)
S∑

n≥2

∑
z θn(z, ϕ)gn−1(z)

Solving for S, we obtain the stationary measure of active sellers:

S =

(
bA + h0(ϕ)

∑
z

θ1(z, ϕ) +

+∞∑
n=1

∑
z

θn+1(z, ϕ)gn(z)

)−1

Finally, the mass of potential entrants is S0(ϕ) = Sh0(ϕ), the measure of incumbent sellers is

Sn = Sgn, the measure of active buyers is BA = SbA, and that of inactive buyers is BI = 1−BA.
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F.2 Invariant Distribution (Special Case)

Assume an environment without exogenous (z, ϕ) shocks, and let σn = Sn/(S0 + S), for n =

0, 1, 2, . . . Then, when δf = 0, we can re-write the flow equations in steady state as:

η(θn)σn−1 + (n+ 1)δcσn+1 −
(
η(θn+1) + nδc

)
σn = 0

for any n ≥ 1, and δcσ1 − η(θ1)σ0 = 0. Since
∑+∞
n=0 σn = 1 by construction, {σn} follows a

stationary birth-death process, with Markov transition rates η(θn+1) and nδc for transitions n →
(n+ 1) and n→ (n− 1), respectively. Solving for n ≥ 1 recursively, we find:

σn =
1

n!

∏n−1
i=0 η(θi+1)

(δc)n
σ0 (F.1)

Imposing that
∑+∞
n=0 σn = 1 in equation (F.1) yields:

σ0 =

(
1 +

+∞∑
n=1

1

n!

∏n−1
i=0 η(θi+1)

(δc)n

)−1

(F.2)

From the last expression, it is clear that {σn} admits an ergodic representation if, and only if:

+∞∑
n=1

1

n!

∏n−1
i=0 η(θi+1)

(δc)n
< +∞ (F.3)

Under necessary condition (F.3), the stationary solution of the birth-death process {σn} is given

by (F.1)-(F.2). Using that gn = σn(1 + S0/S) for n ≥ 1, and S0/S = σ0/(1− σ0), we then have:

gn =
S0

S
1

n!

∏n−1
i=0 η(θi+1)

(δc)n
, with

S0

S
=

[
+∞∑
n=1

1

n!

∏n−1
i=0 η(θi+1)

(δc)n

]−1

F.3 Existence of the Joint Surplus Function, given UB

This section shows that there exists a unique joint surplus W , for each given UB . First, we define

the relevant functional space. Recall that the state space isN×Z×Φ = {1, . . . , n̄}×{zi}kzi=1×{ϕj}
kϕ
j=1.

Definition 2 LetW be a closed and bounded subspace of vector-valued functions W : N×Z×Φ→ R,

with the following properties:

1. Increasing in n, i.e. Wn+1(z, ϕ) > Wn(z, ϕ), ∀n ∈ N .

2. Constant at the upper bound of N , i.e. Wn(z, ϕ) = Wn+1(z, ϕ).

For a given UB , the joint surplus can be written as follows:

(r + δf )Wn(z, ϕ) = max
x′(n′,z′,ϕ′)

{
n

(
v(ϕ) + (δf + δc)U

B(ϕ)

)
−

(
C(n; z, ϕ) + ψ

(
x′(n+ 1, z, ϕ);ϕ

)
x′(n+ 1, z, ϕ)

)
+ nδc

(
Wn−1

(
z, ϕ

)
−Wn(z, ϕ)

)
+ ψ

(
x′(n+ 1; z, ϕ);ϕ

)(
Wn+1

(
z, ϕ

)
−Wn(z, ϕ)

)
+
∑
z′∈Z

λz(z
′|z)
(
Wn

(
z′, ϕ

)
−Wn(z, ϕ)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
Wn

(
z, ϕ′

)
−Wn(z, ϕ)

)}
(F.1)
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where we have used the short-hand notation ψ(x;ϕ) ≡ η ◦ µ−1
(

ΓB(ϕ)
x−UB(ϕ)

)
. Equation (F.1) is a

continuous-time recursive problem. In order to use dynamic programming methods, we first transform

it into a form that can be exploited in Blackwell’s Theorem. We do this by a so-called uniformization

method.45 The objective is to construct a set of transition probabilities that mimic those of the

continuous-time specification.

For a given vector of current states γ ≡ (n, z, ϕ), define Γ′ ≡ {0, n− 1, n+ 1} × Z × Φ as the set

of possible future states. Let ζ ≡
{
x′(n′, z′, ϕ′) : (n′, z′, ϕ′) ∈ Γ′

}
⊆ X denote a set of policies. Let

Pγ,γ′(ζ) denote the probability of a γ-to-γ′ transition under policy ζ. Finally, let qγ(ζ) be the vector

of Markov transition rates for a fixed γ. Then, we have:

Pγ,γ′(ζ) ≡ 1

qγ(ζ)
·



ψ
(
x′(n+ 1, z, ϕ);ϕ

)
for γ′ = (n+ 1, z, ϕ)

nδc for γ′ = (n− 1, z, ϕ)

δf for γ′ = (0, z, ϕ)

λz(z
′|z) for γ′ = (n, z′, ϕ), any z′ 6= z

λϕ(ϕ′|ϕ) for γ′ = (n, z, ϕ′), any ϕ′ 6= ϕ

and

qγ(ζ) ≡ ψ
(
x′(n+ 1, z, ϕ);ϕ

)
+ nδc + δf +

∑
z′ 6=z

λz(z
′|z) +

∑
ϕ′ 6=ϕ

λϕ(ϕ′|ϕ)

Since the state space is bounded, there exists a qS < +∞ for which qγ(ζ) < qS , for all states γ,

given ζ. Therefore, we can think of transitions actually occurring at rate q, with a fraction qγ(ζ)/q of

them being actual transitions out of state γ, and the remainder being “fictitious” transitions. Thus,

the Markov chain can be represented by the following transition probabilities, including transitions

across different states as well as from each state into itself:

P̃γ,γ′(ζ) ≡


qγ(ζ)

q
Pγ,γ′(ζ) for γ′ 6= γ

1− qγ(ζ)

q
otherwise

Finally, define the corresponding discount factor as β ≡ q
r+q , and the per-period payoff function

in state (n, z, ϕ) as:

Π̃n(z, ϕ; ζ) ≡ 1

q

[
n
(
v(ϕ) + (δf + δc)U

B(ϕ)
)
−
(
C(n; z, ϕ) + ψ

(
x′(n+ 1, z, ϕ);ϕ

)
x′(n+ 1, z, ϕ)

)]
We can now state the dynamic optimization problem (F.1) in discretized form:

Wn(z, ϕ) = max
ζ⊆X

{
Π̃n(z, ϕ; ζ) + β

∑
γ′∈Γ′

P̃γ,γ′(ζ)Wn′(z
′, ϕ′)

}
(F.2)

We are now ready to prove the main result:

Lemma 3 For any (n, z, ϕ) ∈ N ×Z ×Φ, the joint surplus problem (F.1) admits a unique solution.

That is, the mapping T :W →W defined by:

45 See Ross (1996), Section 5.8. For an application in economics, see Acemoglu and Akcigit (2012).
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T.Wn(z, ϕ) = max
ζ⊆X

{
Π̃n(z, ϕ; ζ) + β

∑
γ′∈Γ′

P̃γ,γ′(ζ)Wn′(z
′, ϕ′)

}
has a fixed point T.Wn(z, ϕ) = Wn(z, ϕ).

Proof. T is a well-defined mapping from W to W. We want to show that it defines a contraction.

Since W is closed and ζ takes values in a compact set, the contraction property will be enough to

invoke Banach’s Fixed Point theorem. Hence, we check that T satisfies monotonicity and discounting.

• Monotonicity: Take Wa,Wb ∈ W such that W a
n (z, ϕ) ≤ W b

n(z, ϕ), ∀(n, z, ϕ) ∈ N × Z × Φ.

Denote the corresponding optimal policies by:

ζ̂i ≡ arg max
ζ

{
Π̃n(z, ϕ; ζ) + β

∑
γ′∈Γ′

P̃γ,γ′(ζ)W i
n′(z

′, ϕ′)

}

for each i = a, b. Then:

T.W b
n(z, ϕ) ≥ Π̃n(z, ϕ; ζ̂a) + β

∑
γ′∈Γ′

P̃γ,γ′(ζ̂a)W b
n′(z

′, ϕ′)

≥ Π̃n(z, ϕ; ζ̂a) + β
∑
γ′∈Γ′

P̃γ,γ′(ζ̂a)W a
n′(z

′, ϕ′)

= T.W a
n (z, ϕ)

for any (n, z, ϕ) ∈ N × Z × Φ, where the first inequality follows by optimality, and the second

one follows from Wa ≤Wb.

• Discounting: Let a ≥ 0 and W ∈ W, and denote the optimal policy by ζ̂. Since a is a

constant, we have that:

T.
[
W + a

]
n
(z, ϕ) = Π̃n(z, ϕ; ζ̂) + β

∑
γ′∈Γ′

P̃γ,γ′(ζ̂)
(
Wn′(z

′, ϕ′) + a
)

= Π̃n(z, ϕ; ζ̂) + β
∑
γ′∈Γ′

P̃γ,γ′(ζ̂)Wn′(z
′, ϕ′) + aβ

= T.Wn(z, ϕ) + aβ

for any (n, z, ϕ) ∈ N × Z × Φ. Since β < 1, discounting obtains.

Therefore, for a given UB , T defines a contraction in W with modulus β, and by Banach’s fixed-

point theorem there exists a unique value function Wn(z, ϕ) such that T.Wn(z, ϕ) = Wn(z, ϕ). �

G Conditional and Aggregate Price Statistics

This section shows how to calculate, using the model’s stationary solution, the conditional and

aggregate price statistics that we use in the validation exercise.

Consider a price spell whose starting date is normalized to t = 0 and which lasts until some

unknown time t ≥ 0. Let T denote the total duration of the price spell, and let F : R+ → [0, 1] be
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the c.d.f. of T . We define the survival function associated to duration T as STt ≡ Pr[T ≥ t] = 1−Ft.
The probability that the price spell will end in the [t, t+ ∆] interval is:

Pr[t < T ≤ t+ ∆] = STt − STt+∆

The hazard function is defined as Pr[t < T ≤ t + ∆|T > t]. Using Bayes’ rule, we can write

the hazard function in terms of the survival function as follows: Pr[t < T ≤ t + ∆|T > t] =

1 − STt+∆

/
STt . The instantaneous hazard rate is then defined by the continuous-time limit, ht ≡

lim∆↘0
1
∆

(
1− STt+∆

/
STt
)
. Using L’Hôpital’s rule:

ht = −∂t logSTt (G.1)

Hence, defining the cumulative hazard as Ht ≡
∫ t

0
hsds, the cumulative hazard and the survival

functions are related by STt = exp {−Ht} (as ST0 = 1−H0 = 1). Using this result, we can write:

Pr[t < T ≤ t+ ∆|T > t] = 1− exp

{
−
∫ t+∆

t

hsds

}
(G.2)

Finally, the expected duration of price spells is given by E{T} =
∫ +∞

0
tdFt. Integrating by parts

and using that STt = 1−Ft, we obtain:

E{T} =

∫ +∞

0

STt dt (G.3)

Instantaneous Hazard Rate Let Tn(z, ϕ) denote the duration of price spells of firm (nt, zt) =

(n, z) in aggregate state ϕ ∈ Φ. Conditional on survival, the probability of a price change during the

interval [t, t+ ∆], given that the price spell was still ongoing at date t, is:

Pr
[
t < Tn(z, ϕ) ≤ t+ ∆

∣∣∣Tn(z, ϕ) > t
]

=
[
η
(
θn+1,t+∆(z, ϕ)

)
∆ + o(∆)

]
+ n

[
δc∆ + o(∆)

]
+
∑
z̃ 6=z

[
λz(z̃|z)∆ + o(∆)

]
+
∑
ϕ̃6=ϕ

[
λϕ(ϕ̃|ϕ)∆ + o(∆)

]
where o(∆) collects higher-order terms. The instantaneous hazard rate (as defined in (G.1)) is:

hn(z, ϕ) = η
(
θn+1(z, ϕ)

)
+ nδc +

∑
z̃ 6=z

λz(z̃|z) +
∑
ϕ̃6=ϕ

λϕ(ϕ̃|ϕ)

Note the absence of time subscripts in the above expression. This is a convenient implication of

our block-recursive structure. Two relevant implications of this result follow:

• The firm-level cumulative hazard is linear in time (though non-linear in the aggregate state):

Hn,t(z, ϕ) = hn(z, ϕ)t (G.4)

The survival function, in turn, takes the simple form STn,t(z, ϕ) = exp
{
− hn(z, ϕ)t

}
.

• The cross-sectional average hazard of price changes is:

Ht(ϕ) ≡
∑
n∈N

∑
z∈Z

gn,t(z)hn(z, ϕ)

viii



where gn(z) = Sn,t(z)
/∑

n,z Sn,t(z) is the firm-size probability mass function (p.m.f.).

Frequency of Price Changes We define the frequency of price changes over a time window of

length one (i.e. 1/∆ sub-periods) as the cumulative probability of a price change after a spell of such

length. Using equations (G.2) and (G.4)), this probability is:

fn(z, ϕ) = 1− exp
{
− hn(z, ϕ)

}
(G.5)

Therefore, the frequency of price changes at the firm-level is a jump variable. The average fre-

quency of price adjustment in the cross-section of firms is:

Ft(ϕ) ≡
∑
n∈N

∑
z∈Z

gn,t(z)fn(z, ϕ)

Hence, the aggregate frequency of price changes evolves over time according to the underlying

distribution dynamics.

Expected Duration of Price Spells From equation (G.4), the price duration Tn(z, ϕ) follows

an exponential distribution with parameter hn(z, ϕ). The average duration (equation (G.3)) is then

simply the reciprocal of the instantaneous hazard. Expressed in terms of frequency, this means:

E
{
Tn(z, ϕ)

}
= − 1

log
(
1− fn(z, ϕ)

) (G.6)

Then:

Dt(ϕ) ≡
∑
n∈N

∑
z∈Z

gn,t(z)

hn(z, ϕ)

is the average expected duration of prices at time t.

Moments of the Distribution of Price Changes Finally, we report moments of the distri-

bution of (non-zero) price log-changes.

• The expected absolute price change in market (n, z) is defined as the average log change in prices.

Denoting p̂ ≡ log p, we have:

µ∆
n (z, ϕ) = η

(
θn+1(z, ϕ)

)∣∣∣p̂n+1(z, ϕ)− p̂n(z, ϕ)
∣∣∣+ nδc

∣∣∣p̂n(z, ϕ)− p̂n−1(z, ϕ)
∣∣∣

+
∑
z̃ 6=z

λz(z̃|z)
∣∣∣p̂n(z̃, ϕ)− p̂n(z, ϕ)

∣∣∣+
∑
ϕ̃6=ϕ

λϕ(ϕ̃|ϕ)
∣∣∣p̂n(z, ϕ̃)− p̂n(z, ϕ)

∣∣∣
where

∣∣.∣∣ denotes the absolute value.

• The variance of the distribution of price changes is given by:

σ∆
n (z, ϕ) = η

(
θn+1(z, ϕ)

)(∣∣∣p̂n+1(z, ϕ)− p̂n(z, ϕ)
∣∣∣− µ∆

n (z, ϕ)
)2

+ nδc

(∣∣∣p̂n(z, ϕ)− p̂n−1(z, ϕ)
∣∣∣− µ∆

n (z, ϕ)
)2

+
∑
z̃ 6=z

λz(z̃|z)
(∣∣∣p̂n(z̃, ϕ)− p̂n(z, ϕ)

∣∣∣− µ∆
n (z, ϕ)

)2

+
∑
ϕ̃6=ϕ

λϕ(ϕ̃|ϕ)
(∣∣∣p̂n(z, ϕ̃)− p̂n(z, ϕ)

∣∣∣− µ∆
n (z, ϕ)

)2

where σ∆
n (z, ϕ) denotes the variance of price changes.
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At the population level, these moments cannot be aggregated using g (the unconditional firm

distribution), for not all firms change prices every period. Instead, we use the so-called renewal

distribution of firms, that is, the distribution of firms conditional on a price adjustment:

rn,t(z, ϕ) ≡ gn,t(z)fn(z, ϕ)∑
n∈N

∑
z∈Z

gn,t(z)fn(z, ϕ)

Then, the average expected size and the average standard deviation of price changes are:

M∆
t (ϕ) ≡

∑
n∈N

∑
z∈Z

rn,t(z, ϕ)µ∆
n (z, ϕ) and Σ∆

t (ϕ) ≡
∑
n∈N

∑
z∈Z

rn,t(z, ϕ)
√
σ∆
n (z, ϕ)

respectively.
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