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Abstract

Should we expect inflation to be stable at the Effective Lower Bound?
According to the workhorse model for monetary policy analysis, the an-
swer should be no as the economy experiences sunspots/multiple equi-
libria. In this paper, I show that if we take monetary policy seriously, this
possibility becomes much less likely. Using a model in which monetary
policy is optimal subject to a loose commitment constraint, I show that
there is a threshold degree of commitment such that the equilibrium is
unique at the ELB. In this case, inflation will be stable at the ELB. Fur-
ther, if the degree of commitment is high enough then (i) the model does
not feature policy puzzles and (ii) converges smoothly to its flexible price
limit. These features help to reconcile the New Keynesian model with re-
cent empirical evidence.

∗Department of Economics, National University of Singapore 1 Arts Link, AS2 # 05-22 -
Singapore 117570. Contact : jordan.roulleau@gmail.com



1 Introduction

Should we expect inflation to be stable at the Effective Lower Bound? Accord-

ing to the workhorse model for monetary policy analysis —the New Keyne-

sian model with the Central Bank following a Taylor rule, the economy should

be plagued with sunspot driven fluctuations. In this model, sunspot-driven

fluctuations are ruled out when the Central Bank is able to react aggressively

enough to inflation fluctuations. Since it is not able to do so at the Effective

Lower Bound, sunspots can potentially affect inflation/output fluctuations.

After an ELB spell of roughly 7 years in the United States, the verdict is in:

inflation/output fluctuations have been remarkably mild (see Cochrane (2018)

and Christiano (2018) for a comment). This is illustrated in Figure 1, where I

plot both inflation and output growth in recent years alongside the effective

Federal Funds Rate. There is no sign of increased volatility during the ELB

spell for these two variables; if anything, both look more volatile before than

during the ELB spell.

Figure 1: Inflation and Output during the U.S. Great Recession
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In this paper, I show that taking monetary policy seriously can reconcile

these two seemingly contradictory statements. Indeed, it is hard to argue that
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the Federal Reserve has only been helplessly following a Taylor rule during

the period 2009-2016. There were many forward guidance announcements

during this period1 as well as a large and bold policy of quantitative easing. It

therefore does not follow that, because the interest rate was at its ELB then the

Central Bank had no traction on the economy.

To give a (potentially) meaningful role for monetary policy at the ELB, I

study a New Keynesian model with loose commitment2. This model nests

both discretion and full commitment as special cases. The main result of this

paper is that there exists a threshold degree of commitment over which the

Central Bank will be able to implement a unique equilibrium at the ELB. It

follows that (i) sunspot driven fluctuations are to be expected under discretion

and (ii) they will vanish under full commitment.

If the degree of commitment is high enough then the New Keynesian model

behaves well at the ELB. The policy paradoxes that usually emerge under a

Taylor rule3 are no longer there. To single out one of those, the paradox of flex-

ibility implies that as prices become more flexible, the standard New Keyne-

sian model displays explosive behavior at the ELB. In my setup, if the degree of

commitment is high enough the model converges smoothly to its flexible price

limit. Finally, the required degree of commitment is not implausibly large : if

the Central Bank is able to commit for at least 5 quarters then these conclusion

hold.
1According to the typology developed in Filardo & Hofmann (2014), the Federal Reserve

engaged in open-ended forward guidance from December 2008 to July 2011. It then switched
to calendar-based forward guidance until November 2012. Finally it turned to threshold-based
forward guidance until the end of 2016.

2See Schaumburg & Tambalotti (2007), Bodenstein et al. (2012) and Debortoli & Lakdawala
(2016).

3See Eggertsson (2010), Christiano et al. (2011), Eggertsson & Krugman (2012) and Eggerts-
son et al. (2014).
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1.1 Related Literature

This paper builds on a vast and rapidly expanding literature. The seminal ar-

ticle about price determinacy in monetary models is Sargent & Wallace (1975),

who show that exogenous interest rules lead to indeterminacy. In another sem-

inal contribution, Clarida et al. (2000) show that the key is that interest rules4

should be endogenous to ensure determinacy. While this is necessary, the suffi-

cient condition is that such rules should react aggressively enough to infla-

tion/output fluctuations. This has been known as the Taylor Principle. It

should be noted that the latter only guarantees that the equilibrium will be

unique locally.

How exactly following this kind of rule weeds out multiple equilibria has

been a subject of debate. Both Atkeson et al. (2010) and Cochrane (2011) study

escape clauses coupled with interest rules to get rid of multiple equilibria and

conclude that adhering to the Taylor Principle does not really solve the prob-

lem of multiple equilibria. A recent counterpoint can be found in Christiano &

Takahashi (2018).

In an influential paper, Benhabib et al. (2001) show that the presence of

an ELB generates global multiplicity of equilibria in New Keynesian models.

Recent contributions that study the multiplicity of equilibria at the ELB in-

clude Aruoba & Schorfheide (2013), Cochrane (2013), Mertens & Ravn (2014),

Schmidt & Nakata (2015), Armenter (2016) and Holden (2017). This paper is

also related to the literature on optimal monetary policy in the New Keynesian

framework. Here, the seminal contribution is Gertler et al. (1999). This paper

is mostly related to the follow-up literature that focused on optimal monetary

policy at the ELB, which includes Eggertsson & Woodford (2003), Jung et al.

4See also Kerr & King (1996), Bernanke & Woodford (1997) and Bullard & Mitra (2007).
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(2005), Sugo & Teranishi (2005) and Adam & Billi (2006). Recent contributions

include Schmidt (2013), Hasui et al. (2016), Schmidt & Nakata (2015) and Bil-

biie (2016).

The literature on optimal monetary policy at the ELB has been focused on

two polar cases : discretion and full commitment. Outside the ELB, some

contributions have focused on the spectrum between those two polar cases :

see Schaumburg & Tambalotti (2007), Kara (2007) and Debortoli & Lakdawala

(2016). An exception that studies a framework with loose commitment at the

ELB is Bodenstein et al. (2012).

Finally, there is a recent (mostly empirical) literature trying to gauge how

much of a constraint on monetary policy the ELB actually was. The main result

from this literature is that the ELB was not a very tight constraint on monetary

policy. Swanson & Williams (2014) show that Treasury yields of relatively long

maturities were still sensitive to economic news during the ELB period. Wu

& Xia (2016) compute a shadow interest rate and show that, even though the

effective Federal Funds Rate was at the ELB, monetary policy still had traction

on the economy. Finally, Davide Debortoli & Gambetti (2018) study a time-

varying structural VAR and find no change of transmission mechanisms at the

ELB.

To the best of my knowledge, none of those papers study how the determi-

nacy properties of the New Keynesian model at the ELB depend on the degree

of Monetary Policy commitment. Both Schmidt & Nakata (2015) and Armenter

(2016) show that the New Keynesian model has multiple Markov equilibria at

the ELB under discretionary policy. Since they both focus on Markov equilib-

ria, they rule out sunspots by construction. The findings reported in this paper

are thus complementary as I show that under discretion, the model features

infinitely many equilibria. While Bodenstein et al. (2012) do study a model of
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loose commitment at the ELB, they look for minimum state variable solutions.

Therefore, they cannot analyze equilibrium determinacy by construction.

2 Model

I start from a baseline, two-equations New Keynesian model as in Schmidt

(2013) :

πt = βEtπt+1 + κỹt (1)

ỹt = Etỹt+1 − σ(Rt + log(β)−Etπt+1 − R∗t ), (2)

where ỹt = yt − y∗t is the deviation of actual output from potential and R∗t is

the natural rate of interest. The slope of the Phillips curve is

κ =
(1− α)(1− αβ)

α(1 + ηθ)
(σ−1 + η),

where α is the standard Calvo probability. The natural output/rate of interest

are given by

y∗t = Θat + Γ(gt + ξt) (3)

R∗t = σ−1 (Ety∗t+1 − y∗t + gt −Etgt+1
)

, (4)

where at is a technology shock, gt a government spending shock and ξt a pref-

erence shock. The constant parameters are defined as

Θ =
η + 1

η + σ−1 & Γ =
σ−1

η + σ−1 ,
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where σ is the elasticity of intertemporal substitution and η is the (inverse of

the) Frisch elasticity of labor supply.

3 Indeterminacy and Policy Puzzles at the ELB with

a Taylor Rule

Suppose that the Central Bank follows a Taylor rule given by

Rt = max {φππt − log(β), 0} . (5)

It is well known that in this case, there is a unique equilibrium if and only if

φπ > 1. It can be also shown that if there is a large recessionary shock ξt, the

Zero Lower Bound will be a binding constraint. In this case, the equilibrium

is given (up to a constant) by the standard equilibrium in which I set φπ = 0.

Therefore, there are multiple equilibria at the ELB. This comes from the fact

that the Central Bank looses its ability to shape (expected) inflation.

To derive analytically the multiplier effects of government spending and

technology shocks at the ELB, assume that all shocks have a two state Marko-

vian structure. Once a shock occurs, it persists next period with a probability

given by p. This allows us to write Etzt+1 = p · zt for each variable zt. Given

this, setting Rt = 0 and using equations (1)-(2) I get

ỹt =
1− βp

(1− βp)(1− p)− σpκ
σ(R∗t − log(β)). (6)
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To ensure that the economy ends up in a liquidity trap due to fundamentals

and not expectations (see Mertens & Ravn (2014)), I set the parameters such

that the numerator of the right-hand side is positive. If the decline in ξt is large

enough, then this ensures that the economy experiences a negative output gap

at the ELB.

Now I want to compute the effect of government spending and technology

shocks at the ELB. Let us begin with the technology shock. From equations (4)

and (6), I get

∂ỹt

∂at
=

1− βp
(1− βp)(1− p)− σpκ

σ
∂R∗t
∂at

=
1− βp

(1− βp)(1− p)− σpκ
σ

Θ(p− 1)
σ

=
1− βp

(1− βp)(1− p)− σpκ
Θ(p− 1)

= − (1− βp)(1− p)
(1− βp)(1− p)− σpκ

Θ.

By definition of the output gap and using equation (3), the effect on actual

output at the ELB will be

∂yt

∂at
=

∂ỹt

∂at
+

∂y∗t
∂at

= − (1− βp)(1− p)
(1− βp)(1− p)− σpκ

Θ + Θ

= −Θ
σpκ

(1− βp)(1− p)− σpκ
< 0,

so that a positive technology shock decreases actual output. Furthermore, it

can be seen that in the limit of flexible prices (ie when κ → ∞), I naturally get

∂yt

∂at
=

∂y∗t
∂at

.
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But the left-hand side does not converge smoothly to the right-hand side. This

point has been made recently by Cochrane (2013). It can be easily seen that has

κ increases, there will be a value for which the denominator of ∂yt/∂at goes to

zero and the multiplier explodes. Formally,

∂ỹt

∂at
→ ∞ as κ → (1− βp)(1− p)

pσ

This comes from the fact that an increase in technology generates a decrease in

inflation. As the nominal interest rate is stuck at zero, this causes the real in-

terest rate to increase and households to reduce their consumption. As prices

become more flexible, the increase in real interest rate is magnified and be-

comes unbounded. Note that this comes from the fact that the Central Bank is

essentially helpless in this situation, which is most likely not the case in reality.

Wu & Xia (2016) derive a shadow interest rate for the Federal Reserve which

shows that the Central Bank still had traction on effective lending/borrowing

costs at the Zero Lower Bound. Relatedly, Chen et al. (2017) shows that a

Central Bank that is optimizing every period outperforms a model in which it

follows a Taylor rule.

Moving on to the government spending shock, in a similar manner I get

∂ỹt

∂gt
=

1− βp
(1− βp)(1− p)− σpκ

σ
∂R∗t
∂gt

=
1− βp

(1− βp)(1− p)− σpκ
(1− Γ)(1− p).

It follows that

∂yt

∂gt
=

∂ỹt

∂gt
+

∂y∗t
∂gt

=
1− βp

(1− βp)(1− p)− σpκ
(1− Γ)(1− p) + Γ.
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The puzzle aspect of government spending increases at the ELB is that they

tend to give multipliers that are higher than 1. To see this, I can show that

∂yt

∂gt
− 1 = (1− Γ)

σpκ

(1− βp)(1− p)− σpκ
> 0.

This comes from the fact that, by definition Γ < 1. As before, when prices are

flexible the multiplier effect will converge to its flexible part counterpart but

the multiplier effect under sticky prices will become infinite along the way.

This is because higher government spending generates higher inflation and a

lower real interest rate at the ELB, which is just the opposite of what happens

after a positive technology shock.

There has been attempts to make New Keynesian models more in line with

data by changing key aspects of the aggregate supply/demand equations or

the structure of information. In this paper, I show that by making monetary

policy more in line with how it is carried out in reality can make these puzzles

disappear.

4 Model with Imperfect Commitment

Instead of assuming that the Central Bank follows a Taylor-type rule, I now

assume that it will set the (path of) the nominal interest rate optimally. Fol-

lowing Schaumburg & Tambalotti (2007), I assume that the Central Bank only

has access to a loose commitment policy. The length of central bankers’ tenure

depends on a sequence of i.i.d Bernoulli signals {ηt}t≥0 with Eηt = δ, a new

central banker takes office at the beginning of period t. Otherwise, the incum-

bent stays on. All agents observe the realization of ηt. Following Kara (2007),

I also assume that private agents expect the central bank to reformulate policy
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with probability µ (what he calls ”imperfect credibility of intentions”). This

means that, from the point of view of private agents the expected duration of

a tenure is δ + µ. That is, private agents always expect a tenure that is shorter

than the actual one. This can be motivated by the fact that they know that com-

mitment is dynamically inefficient in this setup as policymakers would like to

re-optimize instead of upholding past promises.

The central bank is aware of that. Each policymaker can credibly commit

to a state-contingent plan for the entire duration of her tenure, but cannot con-

strain the actions of her successors.

Given the simple structure of the New Keynesian model, it can be shown

(see Woodford (2011)) that a second order approximation of the utility function

gives a loss function

Lt ≡ π2
t +

κ

θ
ỹ2

t + λR(Rt − R)2,

where θ is the elasticity of substitution across goods and λR is a positive pa-

rameter5. The Central Bank then seeks to maximize the following objective:

E0

{ ∞

∑
j=0

δ(1− δ)j−1
[

δjβV(R∗j ) +
1
2

j−1

∑
t=0

βtLt

+ φ1,t
[
πt − κỹt − β(1− (δ + µ))πt+1

]
+ φ2,t

[
ỹt + σ(Rt − (1− (δ + µ))πt+1 − R∗t )− (1− (δ + µ))ỹt+1

]
+ φ3,t

[
Rt − 0

]]}
+ t.i.p,

where t.i.p stands for terms independent of policy. In particular, expected in-

5See Woodford (2011), Chapter 6.
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flation can be written as

Etπt+1 = (1− (δ + µ))πt+1 + (δ + µ)π
reop
t+1 ,

where the second term on the right hand side is expected inflation in case the

Central Bank re-optimizes. Since I will be focusing on what happens within a

given commitment regime, this term can be considered independent of policy.

Following Kara (2007), the objective can be rewritten as

E0

{ ∞

∑
t=0

((1− δ)β)t
[

δβV(R∗t+1) +
1
2

Lt

+ φ1,t
[
πt − κỹt − β(1− (δ + µ))πt+1

]
+ φ2,t

[
ỹt + σ(Rt + log(β)− (1− (δ + µ))πt+1 − R∗t )− (1− (δ + µ))ỹt+1

]
+ φ3,t

[
Rt − 0

]]}
+ t.i.p.

For simplicity, I assume that µ = δ · (1− δ) and define γ ≡ 1− δ. With these

assumptions, the first order conditions are given by

0 = πt + φ1,t − γφ1,t−1 −
γσ

β
φ2,t−1 (7)

0 =
κ

θ
ỹt − κφ1,t + φ2,t −

γ

β
φ2,t−1 (8)

0 = λR(Rt − R) + σφ2,t + φ3,t (9)

0 = Rtφ3,t, Rt ≥ 0, φ3,t ≥ 0. (10)

The last one is the slackness condition. When the economy is out of the Zero

Lower Bound, Rt > 0 and thus φ3,t = 0. When the economy is at the Zero

Lower Bound, Rt = 0 and φ3,t > 0.

Again, this system describes the dynamics of the economy within a given

regime. Alternatively, I could assume away imperfect credibility of intentions
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(µ = 0). In this case, the FOCs will give a system that is identical to the one

with full commitment. Again, this is conditional on the regime staying the

same. I could then average the behavior of the economy across realizations of

the signal ηt; because Eηt = δ, past promises will not be binding 100 · δ% of the

time. To the contrary, they will be binding 100 · (1− δ)% of the time. Therefore,

the present system of equations can be derived under the assumption that I

care about the average dynamics of the economy after countless realizations

of the signal. With this in mind, I now study the properties of this system.

4.1 Determinacy

If variations in R∗t are too small for the ELB to become a binding constraint,

it is trivial to show that the Central Bank can implement a unique equilib-

rium by targeting the natural rate of interest. If the ELB becomes a binding

constraint however, then the degree of commitment potentially matters. Even

though the Central Bank cannot move the interest rate at time t, it can make an-

nouncements and act as a coordination device for inflation expectation. Note

that since I focus on what happens within a ELB regime, what happens after

the trap is irrelevant. What matters for determinacy here is what the Central

Bank is able to do during the ELB. I turn to this issue now.

To approximate the ELB situation, I consider the case where λR ∞. This

means that it is infinitely costly for the Central Bank to move the nominal

interest rate. To see whether the model features multiple equilibria at the ELB,

I re-write it in matrix form. Since Rt = 0, then φ3,t > 0 and equation (9)

just expresses φ3,t as a function of φ2,t. Therefore, I only need equations (7)-

(8) along the private sector equilibrium conditions to characterize potential

equilibria. Let us define Zt = [πt ỹt φ1,t−1 φ2,t−1]
′
. Then combining the FOCs
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from the private sector and the policymaker, I get:

A ·EtZt+1 = B · Zt + St + C,

where St is a matrix that regroups linear combinations of the shocks and the

matrices A and B are given by:

A =


1 0 0 0

σ 1 0 0

0 0 1 0

0 0 −κ 1

 & B =


1
β − κ

β 0 0

0 1 0 0

−1 0 γ γσ
β

0 − κ
θ 0 γ

β

 .

Given this, I have two jump variables (πt and ỹt) and two backward-looking

ones (φ1,t−1 and φ2,t−1). So the system features a unique equilibrium if and

only if the matrix

D ≡ A−1B,

has two eigenvalues with modulus strictly higher than 1 and two below. Since

I want to study both (i) the effect of imperfect commitment and (ii) how the

sticky price model relates to its flexible price limit, I will study the determinacy

properties of the model as a function of both γ and α. To do so, I need first to

characterize the four eigenvalues. As a first step, the following Lemma will be

useful.

Lemma 1 The eigenvalues of matrix D are the roots of

P1(λ) · P2(λ) = 0,

where P1 and P2 are both second order polynomials.

The proof of this Lemma is in the Appendix. Now Analysing each polynomial
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separately, I can show the following Proposition:

Proposition 1 Let λi
j be the i-th eigenvalue of polynomial j. Then it can be shown

that

|λ1
1| > 1 , |λ2

1| < 1 and |λ2
2| < 1.

The proof of this Proposition is in the Appendix. As it stands there are two

eigenvalues inside the unit circle and one outside. Since the model features

two forward-looking variables, two eigenvalues outside the unit circle are

needed to ensure determinacy. For the first three eigenvalues already de-

scribed, their position with respect to the unit circle does not depend on the

degree of commitment. This is not the case for the last eigenvalue, for which

the following proposition applies.

Proposition 2 Let λ1
2 be the first eigenvalue of polynomial 2. Then it can be shown

that

|λ1
2| > 1 ⇔ γ > γ∗.

Furthermore, γ∗ ∈ (0, 1).

So there exists a minimal degree of commitment from the Central Bank that

will ensure that there is a unique equilibrium at the ELB. The result in Propo-

sition 2 can be used to study the two polar cases that have been extensively

studied in the literature, namely the case of discretion (γ = 0) and full com-

mitment (γ = 1).

Corollary .1 It follows from Proposition 2 that the two polar cases of discretion and

full commitment can be characterized as follows:
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1. The discretion case with γ = 0 will necessarily feature multiple equilibrium/sunspots

at the ELB

2. The full commitment case with γ = 1 will necessarily feature a unique equilib-

rium/no sunspots at the ELB.

The first result echoes findings reported in a recent paper by Armenter (2016),

who shows that a Central Banker acting under discretion will fail to implement

its target inflation at the Zero Lower Bound. The present result is different in

that Armenter (2016) focuses of Markov equilibria and thus rules out sunspot-

driven equilibria. In my setup, since the Central Banker optimizes on a quar-

ter to quarter basis, it has no ability to shape the private sector’s expectations

about future policy. As a consequence, these expectations remain deflationary

and the economy is vulnerable to sunspot-induced fluctuations. This finding

thus complements the ones reported in Armenter (2016) : discretionary mone-

tary policy at the ELB is highly unlikely to feature a unique equilibrium.

In the case of full commitment, the Central Banker is allowed to make cred-

ible announcements about future policy and so can shape expected inflation. It

follows that, even though the Central Banker has no ability to move its interest

rate now, it still has some traction on economic activity. This property has been

noted in the numerical experiments in Roulleau-Pasdeloup (2018). This result

also formalizes the idea that a Central Bank is not powerless at the ELB (see

Wu & Xia (2016), Swanson (2018))

The question is now : How does this depends on the primitives of the

model? For example, will more flexible prices make it more difficult for the

Central Bank to ensure a unique equilibrium at the ELB? I answer these ques-

tions in the following proposition.
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Proposition 3 The threshold level of commitment to ensure a unique equilibrium at

the ELB has the following properties:

1.
∂γ∗

∂σ
< 0

2.
∂γ∗

∂α
> 0

3. sign
(

∂γ∗

∂η

)
= sign (σ− θ)

Part 1 says that the higher the elasticity of intertemporal substitution, the

lower the threshold degree of commitment needed for a unique equilibrium at

the ELB. A higher elasticity of substitution means that variations in expected

inflation —and thus, variations in the real interest rate at the ELB —have more

traction on the actual output gap. Thus, the more willing households are to

move resources across time, the easier it is for the Central Bank to engineer a

unique equilibrium at the ELB.

Part 2 says that as prices becomes more sticky (remember that the average

duration of a given price reset is 1/(1− α)), the threshold degree of commit-

ment needed for a unique equilibrium at the ELB is now higher. Stickier prices

means that the Central Bank will find it more difficult to move inflation around

as desired at the ELB. As a result, it will be more difficult to deliver a unique

equilibrium.

Finally, part 3 says that the effect of varying the (inverse of the) Frisch elas-

ticity has ambiguous effect on the threshold degree of commitment. If σ < θ

(which is true under most usual calibrations of these two parameters), then a

lower Frisch elasticity will decrease the threshold degree of commitment. De-

creasing the Frisch elasticity relative to a baseline calibration will lead house-

hold members to ask for a higher real wage to work more hours. This means

that a given variation in output gap will translate into a larger variation in
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real marginal costs and inflation. To put it differently, as long as σ < θ, a

lower Frisch elasticity will increase the slope of the Phillips Curve. In turn, this

higher slope will make it easier for the Central Bank to engineer the desired

fluctuations in (expected) inflation, and thus to implement a unique equilib-

rium.

5 Policy Puzzles with Loose Commitment

5.1 A Special Case : Discretion

Whenever γ > 0, past promises matter to some extent and thus the dynamic

system has two endogenous state variables. In this subsection, I focus on the

polar case of discretion for which past promises do not matter. This implies

that I can solve the model analytically and study whether it displays the same

kind of puzzles as the one in which the Central Bank follows a Taylor rule.

Given the results in section 4.1, the multiplier effects are derived for the min-

imum state variable solution. Since the Central Bank is not able to commit

on any promises, the question is whether the allocation after a natural rate

shock at the ELB is different from the Taylor rule specification. The answer is

in Proposition 4:

Proposition 4 Assume full discretion so that the Central Banker cannot commit be-

yond the current quarter. The multiplier effect on output gap of a variation in the

natural rate of interest is:

∂ỹt

∂R∗t
=

1− βp
(1− βp)(1− p)− σpκ

σ,
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which is exactly the same as in the setup in which the Central Bank follows a Taylor

rule.

The proof is in the Appendix. Since the Central Bank is not able to commit,

then there is nothing that it can do above and beyond what a Taylor rule would

prescribe. As such, the dynamics at the ELB are identical whether the Central

Bank follows a Taylor rule or acts under discretion. This is different from what

would happen in normal times however. Away from the ELB, the optimal

discretionary policy will call for a path of interest rate that will be different6

from the one prescribed by a Taylor rule.

It follows that under discretion, the multiplier effect of variations in the nat-

ural interest rate will explode under some paramter configurations and thus

will not converge to their flexible price limit smoothly.

5.2 The General Case

To illustrate further how the degree of commitment matters, I plot the impact

response to a 1% government spending shock as a function of the probability

to keep the same price α after a preference shock sends the economy at the

ELB. For the rest of the parameters, the calibration follows ?? and is described

in the Appendix.

First, in Figure 2 I consider the case in which γ takes the value estimated

in Debortoli & Lakdawala (2016), which is 0.81. I want to know whether the

multiplier effect converges to its flexible price counterpart smoothly, so I plot

the difference between the actual multiplier effect under sticky prices and Γ,

6Unless the Taylor rule is optimal in the sense that it is derived such as to replicate the
equilibrium under discretion as in see Giannoni & Woodford (2003).
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Figure 2: Fiscal Multiplier as a Function of Price Flexibility (γ = 0.81)
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the multiplier under flexible prices. From Figure 2, one can see that the multi-

plier does converge smoothly to its flexible price counterpart as prices become

more flexible. I also plot the difference in multipliers on a log scale to highlight

that it does actually converge to zero.

Now I turn to the case of a technology shock. Has I have shown before, the

puzzle here is that in a standard New-Keynesian model an increase in produc-

tivity will be contractionary. I first begin with the case γ = 0.81 and plot the

results in Figure 3. In this case, one can see that the impact of a temporary in-

crease in technology is always positive and converges smoothly to its flexible

price counterpart Θ. Given the baseline calibration, I have Θ ' 2.33.

6 Conclusion
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Figure 3: Technology Multiplier as a Function of Price Flexibility (γ = 0.81)
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7 Proofs

7.1 Proof of Lemma 1

Let the eigenvalues of D be λ. I know that |D − λI| = 0, where I is the 4x4

identity matrix. Using minors and cofactors, I get:

0 =

∣∣∣∣∣∣∣∣∣∣∣∣

1
β − λ − κ

β 0 0

− σ
β

σκ
β + 1− λ 0 0

−1 0 γ− λ γσ
β

−κ − κ
θ γκ γσκ+γ

β − λ

∣∣∣∣∣∣∣∣∣∣∣∣
⇔ 0 = (

1
β
− λ)

∣∣∣∣∣∣∣∣∣
σκ+β

β − λ 0 0

0 γ− λ γσ
β

− κ
θ γκ γσκ+γ

β − λ

∣∣∣∣∣∣∣∣∣+
κ

β

∣∣∣∣∣∣∣∣∣
− σ

β 0 0

−1 γ− λ γσ
β

−κ γκ γσκ+γ
β − λ

∣∣∣∣∣∣∣∣∣
Using minors and cofactors again, I get:

0 =

(
1
β
− λ

)(
σκ + β

β
− λ

) [
(γ− λ)

(
γσκ + γ

β
− λ

)
− γ2κσ

β

]
−

σκ

β2

[
(γ− λ)

(
γσκ + γ

β
− λ

)
− γ2κσ

β

]
⇔ 0 =

[
(γ− λ)

(
γσκ + γ

β
− λ

)
− γ2κσ

β

] [
σκ + β

β2 − λ

β
− σκ + β

β
λ + λ2 − σκ

β2

]
⇔ 0 =

[
(γ− λ) (γσκ + γ− βλ)− γ2κσ

β

] [
1− λ− σκλ− βλ + βλ2

β

]
⇔ 0 =

[
βλ2 + (−γβ− γσκ − γ) λ + γ2] [βλ2 + (−σκ − β− 1) λ + 1

]
⇔ 0 =

[
βλ2 − λψ + 1

] [
βλ2 − γλψ + γ2]

⇔ 0 ≡P1(λ) · P2(λ)

where I have defined ψ = 1 + β + σκ.
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7.2 Proof of Proposition 1

Let us begin with polynomial 1. The discriminant of this polynomial is given

by

∆1 = ψ2 − 4β.

The polynomial P1 will have two real roots if ∆1(γ) > 0. In the special case that

γ = 0, then there is a unique root that is trivially given by λ = 0. Excluding

this special case, the discriminant will be strictly positive if

ψ2 − 4β > 0

⇔ 1 + β2 + 2β + (σκ)2 + 2(1 + β)σκ − 4β > 0

⇔ 1 + β2 + (σκ)2 + 2(1 + β)σκ > 2β

⇔ β2 + 1− 2β + (σκ)2 + 2(1 + β)σκ > 0

⇔ (β− 1)2 + (σκ)2 + 2(1 + β)σκ > 0,

which is always the case. There are thus two real roots given by

λ1
1 =

ψ +
√

∆1

2β
& λ2

1 =
ψ−
√

∆1

2β
.

I know study whether the lie inside/outside the unit circle.

7.2.1 Sign of |λ1
1| − 1

First, note λ1
1 is strictly positive, so it is sufficient to show that λ1

1 > 1. Since

1 + β > 2β, then

λ1
1 =

1 + β + σκ +
√

∆1

2β
>

2β +
√

∆1

2β
> 1.
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7.2.2 Sign of |λ2
1| − 1

At first sight, the sign of λ2
1 is a priori ambiguous. However, since β > 0, I can

write

ψ2 + 4β > ψ2

⇔ ψ2 > ∆1 > 0

⇔ ψ−
√

∆1 > 0.

So it follows that |λ2
1| > 1 if, and only if λ2

1 > 1. This will be the case if

ψ− 2β >
√

ψ2 − 4β

⇔ (ψ− 2β)2 > ψ2 − 4β

⇔ ψ2 + 4β2 − 4βψ > ψ2 − 4β

⇔ 4β(β + 1− ψ) > 0

⇔ β + 1− ψ > 0

⇔ − σκ > 0,

which is not possible, so in the end |λ2
1| < 1.

Let us now turn to the second polynomial. The discriminant of this poly-

nomial is given by

∆2 = (ψγ)2 − 4βγ2.

Depending on the value of γ, there are two cases to consider for the discrim-

inant. If γ = 0, then ∆2 = 0 and the polynomial has just one root given by

λ = 0. So in this case the eigenvalue has a modulus strictly lower than 1. In
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the general case where γ > 0, then the discriminant is positive if and only if

ψ2 − 4β > 0,

which has already been shown to be strictly positive. So when γ > 0, there are

two real eigenvalues given by

λ1
2 =

γψ +
√

∆2

2β
& λ2

2 =
γψ−

√
∆2

2β
.

Let us begin with the second root. First, note that it can be rewritten as

λ2
2 = γ

ψ−
√

∆1

2β

= γ · λ2
1.

Since γ ∈ (0, 1) and |λ2
1| < 1, then it follows that |λ2

2| < 1.

7.3 Proof of Proposition 2

Given the definition of λ1
2, it is strictly positive. Further, it follows that

λ1
2 > 1 ⇔ γ >

2β

ψ +
√

∆1
≡ γ∗.
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Next, it still needs to be proven that γ∗ ∈ (0, 1). It is straightforward to see

that γ∗ > 0. Now, given the definition of ψ

ψ = 1 + β + σκ > 2β

⇔ ψ +
√

∆1 > 2β

⇔ (ψ +
√

∆1)
−1 < (2β)−1

⇔ γ∗ < 1.

7.4 Proof of Proposition 3

Given the definition of γ∗ and the fact that ψ = 1+ β+ σκ, it is straightforward

to see that γ∗ is a decreasing function of both σ and α. How γ∗ varies with

respect to η is less straightforward. Since γ∗ is a strictly decreasing function

of ψ, it is sufficient to study how the latter varies with respect to η. Formally,

given the definition of κ I get:

∂ψ

∂η
=

(1− α)(1− αβ)

α

[
σ(1 + ηθ)− θ(1 + ση)

(1 + ηθ)2

]
=

(1− α)(1− αβ)

α

[
σ− θ

(1 + ηθ)2

]
.

From this, it follows that since

∂γ∗

∂η
=

∂γ∗

∂ψ

∂ψ

∂η
&

∂γ∗

∂ψ
> 0,

I have the third result in Proposition 3.
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7.5 Proof of Proposition 4

Under discretion (γ = 0), when I combine the FOCs from the private sector

and the policymaker, I get:

F ·EtXt+1 = G · Xt + St + C̃, (11)

where Xt = [πt ỹt φ2,t−1]
′

and the matrices F, G and St are given by:

F =


1 0 0

σ 1 0

0 0 1

 , G =


1
β − κ

β 0

0 1 0

−κ − κ
θ 0

 & St =


0

−σ

0


Ignoring constant terms, this system can be rewritten as

EtXt+1 = F−1G · Xt + F−1St

= F−1G · Xt + St

= F−1G · Xt + S · R∗t

Given the Markov structure of R∗t , I use the method of undetermined coeffi-

cients. Specifically, I guess that Xt = ΩR∗t . Solving for Ω, I get

EtXt+1 = F−1G · Xt + ΨSt

⇔ pΩSt = F−1G ·ΩSt + ΨSt
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Comparing coefficients, I get:

pΩ = F−1G ·Ω + Ψ

⇔ Ψ = (pI − F−1G)Ω,

⇔ Ω = (pI − F−1G)−1Ψ,

where I is the 3x3 identity matrix. Given the expression for the matrices, I get:

(pI − F−1G) =


p 0 0

0 p 0

0 0 p

−


1 0 0

−σ 1 0

0 0 1




1
β − κ

β 0

0 1 0

−κ − κ
θ 0



=


p 0 0

0 p 0

0 0 p

−


1
β − κ

β 0

−σ
β

σκ
β + 1 0

−κ − κ
θ 0



=


p− 1

β
κ
β 0

σ
β p− σκ

β − 1 0

κ κ
θ p



Taking the inverse, I get:

(pI − F−1G)−1 =


β−βp+κσ

p+βp−βp2+κpσ−1
κ

p+βp−βp2+κpσ−1 0
σ

p+βp−βp2+κpσ−1 − βp−1
p+βp−βp2+κpσ−1 0

− κ(σ+βθ−βpθ+κσθ)
θ(βp2−p−βp3+p2+κp2σ)

− κ(κθ−βp+1)
θ(βp2−p−βp3+p2+κp2σ)

1
p
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The impact of a variation in R∗t on the output gap is then given by

∂ỹt

∂R∗t
=

βp− 1
p + βp− βp2 + κpσ− 1

σ

=
1− βp

(1− βp)(1− p)− σpκ
σ.
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