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Abstract

This paper studies the dynamic general equilibrium effects of monetary shocks in a “control cost”
model of state-dependent retail price adjustment and state-dependent wage adjustment. Both suppli-
ers of retail goods and suppliers of labor are monopolistic competitors that face idiosyncratic pro-
ductivity shocks and nominal rigidities. Stickiness arises because precise choice is costly: decision-
makers tolerate errors both in the timing of adjustments, and in the new level at which the price or
wage is set, because making these choices with perfect precision would be excessively costly.

The model is calibrated to match the size and frequency of price and wage changes. We find that
the impact multiplier of a money growth shock on consumption and labor in our calibrated state-
dependent model is similar to that in a Calvo model with the same adjustment frequencies, though
the response lasts roughly twice as long under the Calvo mechanism. Wage rigidity accounts for
most of the nonneutrality that occurs in a model where both prices and wages are sticky; hence, a
model with both rigidities produces substantially larger real effects of monetary shocks than does a
model with sticky prices only.

We find that the state-dependence of nominal rigidity strongly decreases the slope of the Phillips
curve as trend inflation declines. This result is not driven by downward wage rigidity; adjustment
costs are symmetric in our model. Here, instead, price- and wage-setters prefer to adjust less fre-
quently when trend inflation is low, making short-run inflation less reactive to shocks.

Keywords: Sticky prices, sticky wages, state-dependent adjustment, logit equilibrium, near ra-
tionality, control costs
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1 Introduction1

The nominal rigidity of prices and/or wages is a prominent assumption in monetary macroeconomics
today. For reasons of analytical tractability, many studies are based on Calvo’s (1983) framework, in
which the probability of adjustment is constant. But several influential papers have claimed that if nomi-
nal stickiness is derived from rational decision-making, instead of being imposed in an ad hoc way, then
the real macroeconomic effects monetary policy are negligible (see for example the menu cost models of
Caplin and Spulber, 1987, and Golosov and Lucas, 2007). This finding motivates a wave of new research
investigating how the conclusions of Calvo-style models and menu cost models hold up in a variety of
state-dependent pricing frameworks that are closely calibrated to retail price microdata (e.g. Klenow and
Kryvtsov, 2008; Gagnon, 2009; Matejka, 2010; Midrigan, 2011; Álvarez, González-Rozada, Neumeyer,
and Beraja, 2011; Eichenbaum, Jaimovich, and Rebelo, 2011; Kehoe and Midrigan, 2012; Dotsey, King,
and Wolman, 2013; Álvarez, Lippi, and Paciello, 2014; Costain and Nakov, 2011, 2018).

Much of this new literature concludes, to quote Kehoe and Midrigan, that “prices are sticky after
all”. That is, while money is almost neutral in stripped-down menu cost models like Golosov and Lucas
(2007), related frameworks that fit retail microdata better show that price stickiness does matter at the
aggregate level, delivering nontrivial real effects of monetary policy.2 This apparent consensus represents
an encouraging improvement in the link between microdata and modern macroeconomics, but it derives
from studies where, for computational reasons, price stickiness was the only friction considered. This
contrasts with the current generation of empirical DSGE models that rely not only on nominal rigidity of
prices and wages, but also on many other frictions, such as consumption habits, investment adjustment
costs, and labor matching frictions. Hence, to better assess the quantitative role of nominal rigidity for
macroeconomic dynamics, it is still relevant to study models in which multiple frictions interact.

As a modest step forward, this paper analyzes a model with one additional layer of state-dependent
adjustment, allowing for wage stickiness as well as price stickiness. A natural point of departure for our
analysis is Erceg, Henderson, and Levin’s (2000) study of monopolistic retail price setters and monopo-
listic wage setters, both operating under the Calvo framework. Following Erceg et al., we set up the wage
setters’ problem so that it closely parallels the price setting problem, but we allow for state dependence
in both decisions. More precisely, we compare a framework in which both price and wage setters are
constrained by the Calvo friction to a framework in which price and wage setters are both constrained by
a state-dependent friction, and in addition we compare these with scenarios in which price setting and/or
wage setting approaches perfect flexibility. We emphasize that our goal is to compare different spec-
ifications of price stickiness and wage stickiness while abstracting from any other frictions that might
affect the labor market (or other markets). While the interaction of nominal rigidities with labor market
matching is a major theme of the macro-labor literature, here we quantify the effects of state-dependent
prices and wages by themselves, leaving their interaction with matching frictions for future work.

Our model of state-dependent adjustment is an extension of the “control cost” model of price stick-
iness proposed by Costain and Nakov (2018), henceforth CN18. Control costs are a modeling device
from game theory intended to capture the idea that the costs of precise decision-making sometimes lead

1Thanks to Isaac Baley, Jordi Galı́, Erwan Gautier, Alok Johri, Julián Messina, Michael Reiter, Ernesto Villanueva, and
seminar participants at CEF (2016 and 2017), EEA-ESEM (2016 and 2017), DYNARE 2016, T2M 2017, the Catalan Economic
Society 2017, the 2017 Inflation Targeting Seminar of the Banco Central do Brasil, the 2017 ESCB Monetary Economics Cluster
Workshop, the 2018 Workshop on Theoretical and Experimental Macroeconomics, and at De Nederlandsche Bank (2017) and
Danmarks Nationalbanken (2018) for helpful comments. Views expressed here are those of the authors and do not necessarily
coincide with those of the Bank of Spain, the Eurosystem, the ECB, or the CEPR.

2The reason for nonneutrality is that the microdata seem to favor specifications in which the “selection effect” is weaker
than Golosov and Lucas (2007) found.
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players to make some mistakes.3 Under the control cost framework, a decision is regarded as a random
variable defined over a set of feasible alternatives, and the decision-maker is assumed to face a cost
function that increases with the precision of that random variable. Placing probability one on the optimal
alternative is a very precise decision, so the decision-maker may instead economize on the costs of choice
by tolerating some randomness (some errors) in the alternative chosen. CN18 models nominal rigidity
by applying this framework both to the prices firms choose, and to firms’ control of the timing of their
adjustments. In equilibrium, managers of retail firms economize on the time devoted to decision-making
by tolerating some low-cost errors in the prices they set, and some low-cost errors in the timing of their
price adjustments.

There are a number of reasons why it seems interesting to extend the CN18 framework to other
frictions, beyond price stickiness. First, it describes adjustment costs in a sparsely parameterized way;
the benchmark scenario in CN18 simultaneously fits many “puzzling” features of retail price setting by
calibrating only two free parameters in the decision cost function. Second, these costs have an appealing
interpretation: the costs of price adjustment are interpreted as time devoted by management to decision-
making. These may plausibly be larger than the menu-type fixed costs associated with the physical act of
changing the price, and may be compared, at least roughly, to case studies on time use by management.
Third, the model is no harder to solve numerically than comparable menu cost models, but it is far more
tractable than “rational inattention” models in the tradition of Sims (2003). Fourth, the mathematical
structure of the model— resetting a control variable at intermittent points of time— seems applicable
to many decisions other than price adjustment, potentially allowing us to describe many margins of a
general equilibrium model in a mutually consistent and mutually comparable way. Finally, since the cal-
ibration strategy in the recent state-dependent pricing literature involves matching many moments of the
distribution of individual price adjustments, it stretches credulity to abstract from errors. When matching
(for example) the standard deviation of observed price adjustments, inferences about the standard devia-
tion of the underlying shocks may differ greatly depending on whether or not we insist that every single
price adjustment represents a precisely optimal action.

1.1 Related literature

Time-dependent price and wage rigidities frequently interact in contemporary DSGE models, such as
Blanchard and Galı́ (2007) and Galı́, Smets, and Wouters (2012). One of the key papers that first exam-
ined the interplay of these two rigidities, under the Calvo mechanism, was Erceg, Henderson, and Levin
(2000), which identified a tradeoff between stabilization of output, price inflation, and wage inflation.
Huang and Liu (2002) studied the relative importance of price and wage rigidity in a time-dependent
model, concluding that wage rigidity matters more for monetary non-neutrality; Christiano, Eichenbaum
and Evans (2005) concur. We revisit this question in a state-dependent model.

The literature that contrasts state-dependent pricing models to micro- and macrodata is extensive,
as we discussed above; surveys include Klenow and Malin (2010) and Nakamura and Steinsson (2013).
We know of only one previous study of state-dependent prices and wages in a DSGE model (Takahashi,
2017). Takahashi’s paper differs from ours in that it analyzes a stochastic menu cost model (following
Dotsey et al., 1999) rather than a control cost model. But more importantly, it abstracts from idiosyncratic
shocks, so it cannot be closely assessed relative to patterns in microdata on price and wage changes.
Annual data relevant for analyzing the distribution of wage adjustments include those of the International
Wage Flexibility Project (Dickens et al. 2007), which we will use here. Barattieri, Basu, and Gottschalk

3See Stahl (1990), Mattsson and Weibull (2002), or van Damme (1991), Ch. 4.
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(2014) analyze quarterly wage adjustments in SIPP data. Very recently, wage change data with higher
frequency and higher coverage have also become available (Grigsby, Hurst, and Yildirmaz, 2018).

Since our framework abstracts from any frictions in labor mobility, it is not directly related to the
search and matching literature. However, it can shed light on macro-labor issues such as the slope of the
Phillips curve and the cyclicality of real wages and markups. Akerlof, Dickens, and Perry (1996), Fahr
and Smets (2008), Benigno and Ricci (2011), and Lindé and Trabandt (2018) have argued that downward
nominal wage rigidity makes the Phillips curve flatter when inflation is low. We will show that the same
result is obtained without downward rigidity, if the adjustment hazard varies with inflation.

The cyclicality of the real wage has long been controversial (Huang, Liu, and Phaneuf, 2004; Mc-
Callum and Smets, 2006; Smets and Wouters, 2007). Christiano, Eichenbaum, and Trabandt (2016)
report a small and insignificant procyclical response of the real wage to monetary shocks. Shimer (2007)
argues that the “labor wedge”, defined as the marginal product of labor minus workers’ marginal rate
of substitution, is strongly countercyclical. Equivalently, Galı́, Gertler, and López-Salido (2007) define
an “efficiency gap” (marginal rate of substitution minus marginal product of labor) which they show is
strongly procyclical. They further argue that the wedge (the negative of the gap) decomposes into two
terms: a highly countercyclical markup of wages over the marginal rate of substitution, and a moder-
ately countercyclical markup of prices over firms’ marginal costs. The latter property is controversial:
Nekarda and Ramey (2013) show that a wide variety of estimation procedures reject countercyclical
markups of prices over firms’ marginal costs. Thus, they reject the central tranmission mechanism of the
simplest New Keynesian models, in which prices, but not wages, are rigid. Nonetheless, this leaves open
the possibility that monetary nonneutrality may derive primarily from wage rigidity.

2 Model

We embed the near-rational nominal adjustment model of Costain and Nakov (2018) in a discrete-time
New Keynesian general equilibrium framework that combines elements of Erceg, Henderson, and Levin
(2000) and of Golosov and Lucas (2007). There is a continuum of retail firms and a continuum of
workers; retail goods markets and labor markets are both monopolistically competitive. Each firm is the
unique seller of a differentiated retail good, and resets its nominal price intermittently. Each worker is the
unique seller of a differentiated type of labor, and resets its nominal wage intermittently. Price and wage
adjustments are driven by idiosyncratic as well as aggregate shocks. Workers belong to a representative
household; the budget constraint is defined at the household level. In addition, there is also a monetary
authority that sets an exogenous growth process for the nominal money supply.

2.1 Household

The worker’s period utility function is u(Ct) − X(Ht) + v (Mt/Pt), where Ct is consumption, Ht is
total time devoted to working or decision-making, and Mt/Pt is real money balances. The functions
u and v are assumed increasing and concave. We assume the increasing, convex disutility function
X(H) = χ

1+ζH
1+ζ . We will focus initially on the linear case ζ = 0, implying X(H) = χH , which is

easier to solve, but we will soon see that the nonlinear specification ζ > 0 is necessary to match wage
adjustment data. Utility is discounted by factor β ≡ βIβD per period, where βI represents the effect of
pure impatience, and βD reflects the possibility of death (each individual worker dies and is replaced by
a new individual with probability 1− βD per period). Consumption is a CES aggregate of differentiated

4



products Cjt, with elasticity of substitution ε:

Ct =

{∫ 1

0
C
ε−1
ε

jt dj

} ε
ε−1

. (1)

The representative household consists of a continuum of workers, and aggregates their resources. Its
period budget constraint, in nominal terms, is∫ 1

0
PjtCjtdj +Mt +R−1

t Bt =

∫ 1

0
WitHitdi+Mt−1 +Bt−1 + TMt + TDt . (2)

Here
∫ 1

0 PjtCjtdj is total nominal consumption, and
∫ 1

0 WitHitdi is total labor compensation received
from supplying the differentiated labor varieties Hit. Bt represents nominal bond holdings, with interest
rate Rt − 1; TMt is a lump sum transfer from the central bank, and TDt is a dividend payment from the
firms.

Households choose {Cjt, Bt,Mt}∞t=0 to maximize expected discounted utility, subject to the budget
constraint (2).4 The workers in each household set nominal wages intermittently, as we will discuss in
Sec. 2.3, and they supply labor to fulfill the demand that arises given the nominal wages they have set.
Optimal consumption across the differentiated goods implies

Cjt = (Pjt/Pt)
−εCt, (3)

so nominal spending can be written as PtCt =
∫ 1

0 PjtCjtdj under the price index

Pt ≡
{∫ 1

0
Pjt

1−εdj

} 1
1−ε

. (4)

The first-order conditions for total consumption and for money use are:

R−1
t = βEt

(
Ptu
′(Ct+1)

Pt+1u′(Ct)

)
, (5)

1− v′(Mt/Pt)

u′(Ct)
= βEt

(
Ptu
′(Ct+1)

Pt+1u′(Ct)

)
. (6)

2.2 Monopolistic firms

Each firm j produces output Yjt under a constant returns technology Yjt = AjtNjt. Efficiency units of
labor, denoted Njt, are the only input. Ajt represents an idiosyncratic productivity process that follows
a time-invariant Markov process on a bounded set, Ajt ∈ ΓA ⊆ [A,A]. Productivity innovations are iid
across firms. Thus, Ajt is correlated with Aj,t−1, but it is uncorrelated with other firms’ shocks. Firm j
is a monopolistic competitor that sets a price Pjt, facing the demand curve Yjt = CtP

ε
t P
−ε
jt . We assume

each firm must fulfill all demand at its chosen price. Since firms are infinitesimal, each firm j ignores
the effect of its own price Pjt on the aggregate price level Pt. It hires labor at wage rate Wt, generating
profits

Ujt = PjtYjt −WtNjt =

(
Pjt −

Wt

Ajt

)
CtP

ε
t P
−ε
jt (7)

4We use an abbreviated notation here for the sake of brevity. The time subscript on the household’s decision variables should
not be interpreted as indicating deterministic dependence on time; instead, it indicates dependence on the stochastic aggregate
state of the economy.
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Figure 1: Sequencing of firms’ decisions within the period.

Time lineTime line

Start t:
A,Ω realized

Work and 
decision-making

Decision outcome: 
P’ realized

Start t+1:
A’,Ω’ realized

value decisions Probability λ: value

time

value
V(P,A,Ω)

decisions
τ, μ, λ, π(P’)

Probability λ:
P’ =P

Probability 1-λ:
P’ ~π(P’)

value
V(P’,A’,Ω’)

per period. Firms are owned by the household, so they discount nominal income between times t and
t+ 1 at the rate β Ptu

′(Ct+1)
Pt+1u′(Ct)

, consistent with the household’s marginal rate of substitution.
It will help to distinguish value functions at several different points in time. First, let Vt(P,A) be

the value of a firm that begins period t with nominal price P and productivity A, prior to any time t
decisions, and prior to time t output (see the timeline). We assume that choices take time, so if the firm
decides in period t to adjust its price, the new price only becomes effective at time t + 1.5 Next, let
Ot(P,A) be the firm’s continuation value, net of current profits, when it still has the option to adjust
prices. That is,6

Vt(P,A) =

(
P − Wt

A

)
CtP

ε
t P
−ε +Ot(P,A) (8)

The continuation value Ot(P,A) incorporates the value of the firm’s two possible time-t decisions:
whether to adjust its price, and if so, which new price P ′ to set for period t + 1. The firm may make
errors in either of these choices. We discuss these two decisions in turn, beginning with the latter.

2.2.1 Choosing a new price

Our model formalizes the idea that nominal rigidities may derive primarily from the costs of decision-
making. While one might assume that by paying a fixed cost, the firm can make the optimal choice, this
would amount to imposing a corner solution with perfect precision. We find it more appealing and more
realistic to assume that firms can devote more or less time and resources to decision-making, in order
to choose more or less precisely. In equilibrium in our framework firms will typically prefer to make
choices with an interior degree of precision. Therefore their chosen action will not always be the one

5A one-period lag would be unrealistic if the time period were very long. But when we calibrate the model, we will impose
a monthly time period, so that a one-period lag is not excessively restrictive.

6Again, we use succinct notation, where time subscripts on the value functions represent dependence on the aggregate state.
Thus, if the aggregate state of the economy is Ωt, we define Vt(P,A) ≡ V (P,A,Ωt) and Ot(P,A) ≡ O(P,A,Ωt), Time-
subscripted variables in equation (8) represent aggregate quantities: Pt ≡ P (Ωt) is the aggregate price level, Wt ≡ W (Ωt) is
the aggregate wage, and Ct ≡ C(Ωt) is aggregate consumption demand.
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that would have been optimal in the absence of decision costs; instead, most choices will involve some
degree of “error”.

Consistent with this general description, we adopt the “control cost” approach from game theory
(see van Damme, 1991, Chapter 4). A key feature of this approach is that we model the price decision
indirectly: the firm’s problem is written “as if” it chooses a probability distribution over prices, rather
than choosing the price per se.7 The problem incorporates a cost function that increases with precision:
concentrating greater probability on a smaller range of prices increases costs. Many measures of pre-
cision could be used to define this cost function; we choose a definition based on relative entropy, also
known as Kullback-Leibler divergence, which is a measure of the difference between one probability
distribution and another. For two possible distributions π1(x) and π2(x) of some random variable x with
support on set X , the Kullback-Leibler divergence D(π1||π2) of π1 relative to π2 is defined by8

D(π1||π2) =

∫
X
π1(x) ln

(
π1(x)

π2(x)

)
dx. (9)

Following Stahl (1990) and Mattsson and Weibull (2002), we assume that the decision cost is propor-
tional to the Kullback-Leibler divergence of the chosen distribution, relative to an exogenous benchmark
distribution. Thus, if no decision costs are paid, the action x is distributed according to the benchmark
distribution. But by putting more effort into the decision process, the decision-maker can shrink the
distribution of the action towards the most desirable alternatives.

We assume that decision costs are denominated in units of time, since we regard managers’ time as
the main input to decision-making. The only control variable that the firm must manage is its nominal
price. We regard each adjustment of the nominal price as a costly decision; hence when the firm sets a
new nominal price P̃ , this remains constant in nominal terms until the firm again chooses to make an
adjustment. We benchmark the cost of the decision process against an exogenous benchmark distribution
ηt(P̃ ) with support ΓPt . The time subscripts on ηt and ΓPt allow the benchmark price distribution to
change over time, which allows the economy to have a nominal trend; later we detrend the model by
restating it in real terms.

Assumption 1. The time cost of choosing a distribution π(P̃ ) over nominal prices P̃ ∈ ΓPt is
κπD(π||ηt), where κπ > 0 is a constant, and ηt(P̃ ) is an exogenously-given benchmark
distribution with support ΓPt .

Here κπ represents the marginal cost of entropy reduction, in units of labor time. The cost function de-
scribed in Assumption 1 is nonnegative and convex.9 The upper bound on the cost function is associated
with a distribution that places all probability on a single price P̃ (concretely, costs are maximized when
all probability is placed on one price that minimizes the benchmark probability ηt(P̃ )). The lower bound
on this cost function is zero, associated with choosing the distribution π(P̃ ) equal to the benchmark
distribution ηt(P̃ ).

Now consider the pricing decision under this cost function. If the firm sets a new nominal price P̃ at
time t, this new price only becomes effective at t+ 1, so the value of setting P̃ at t is

V e
t (P̃ , A) ≡ Et

[
β
Ptu
′(Ct+1)

Pt+1u′(Ct)
Vt+1(P̃ , A′)

∣∣∣∣A] , (10)

7Luce (1959) and Machina (1985) are early advocates of analyzing decisions in terms of a probability distribution over
alternatives; this approach is also adopted by Sims (2003). See Chapter 2 of Anderson et al. (1992) for discussion.

8While we write (9) with an integral, we can be agnostic at this point about whether X is a discrete or continuous set. If it
is a continuous set, then π1 and π2 should be interpreted as density functions. If it is a discrete set, then π1 and π2 should be
interpreted as vectors of probabilities, and the integral in (9) should be interpreted as a sum.

9Cover and Thomas (2006), Theorem 2.7.2.

7



where Et [•|A] represents an expectation over the time t + 1 variables Ω′ ≡ Ωt+1 and A′ ≡ Aj,t+1

conditional on the time t aggregate state Ωt and firm j’s time t productivity Aj,t = A. Following the
control costs methodology, we assume the firm maximizes its value by allocating probability across
possible nominal prices P̃ , taking account of decision costs, as follows:

Ṽt(A) = max
π(P̃ )

∫
π(P̃ )V e

t (P̃ , A)dP̃ − κπWt

∫
π(P̃ ) ln

(
π(P̃ )

ηt(P̃ )

)
dP̃ s.t.

∫
π(P̃ )dP̃ = 1 (11)

Note that the decision costs in (11) are converted to nominal units by multiplying by the wage rate. We
write the nominal value of the pricing decision as Ṽt(A), whereA ≡ Ajt is the firm’s current productivity.

The first-order condition for π(P̃ ) in problem (11) is10

V e
t (P̃ , A)− κπWt

(
1 + ln

(
π(P̃ )

ηt(P̃ )

))
− µ = 0,

where µ is the multiplier on the constraint. Some rearrangement yields a weighted multinomial logit
formula:

πt(P̃ |A) ≡
ηt(P̃ ) exp

(
V et (P̃ ,A)
κπWt

)
∫

ΓP ηt(P
′) exp

(
V et (P ′,A)
κπWt

)
dP ′

(12)

The parameter κπ in the logit function can be interpreted as the degree of noise in the decision process;
in the limit as κπ → 0, (12) converges to the policy function under full rationality, so that the optimal
price is chosen with probability one. Plugging the logarithm of πt into the objective, we can also derive
an analytical formula for the value function:

Ṽt(A) = κπWt ln

(∫
ηt(P̃ ) exp

(
V e
t (P̃ , A)

κπWt

)
dP̃

)
. (13)

This formula gives the firm’s nominal value when adjusting its current price, net of decision costs.
Some interpretive comments may be helpful at this point. First, although we write the firm’s problem

“as if” it chooses a probability distribution over prices, this should not be taken literally— actually
choosing a distribution would be a complex, costly diversion from the true task of choosing the price
itself. Rather, we define the decision as a choice of a mixed strategy because this is a way to incorporate
errors into the model. And we describe it as an optimization problem because this disciplines the errors;
it amounts to assuming that the firm devotes time and effort to avoiding especially costly mistakes.
Aspects of the model that we do take seriously include (a) making decisions is costly in terms of time
and other resources; (b) therefore decision-makers do not always take the action that would otherwise
be optimal; (c) ceteris paribus, more valuable actions are more probable; (d) in a retail pricing context,
these considerations apply to the timing of price adjustment, in addition to the actual price chosen, as we
will see in the next subsection.

Second, the problem is written conditional on the true expected discounted values V e
t (P̃ , A) of the

possible nominal prices P̃ , instead of conditioning on a prior, as a “rational inattention” model would.
This reflects the fact that we are not assuming imperfect information. But this is different from saying
that the firm “knows” the true values V e

t (P̃ , A). Instead, our interpretation is that the firm has sufficient

10Note that if we take future values V et (P̃ , A)dP̃ , problem (11) maximizes a concave objective subject to a linear constraint.
Therefore a unique maximum exists for any given backwards induction step.
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information to calculate V e
t (P̃ , A). Even so, drawing correct conclusions from that information, and

acting accordingly, may be costly.11

2.2.2 Choosing the timing of price adjustment

We next analyze, in an analogous manner, the decision whether or not to adjust at time t. As in Sec.
2.2.1, we define costs relative to a benchmark probability distribution over possible actions. But for this
decision, at any t, there are only two options: adjust now, or not. Since the probabilities of these two
alternatives must sum to one, effectively the relevant benchmark is just a single number, which we can
interpret as an exogenous default hazard rate.

We suppose the time period is sufficiently short so that we can ignore multiple adjustments within
a single period. If the firm chooses not to adjust its current price P , then its nominal price next period
will be unchanged: P̃ ′ = P ; the expected value of this unchanged price, from the point of view of
period t, is V e

t (P,A). If instead the firm adjusts its price at time t, then its expected value is Ṽt(A),
as given by (11) and (13). Now suppose it adjusts its price with probability λ. We measure the cost of
this adjustment probability in terms of Kullback-Leibler divergence, relative to some arbitrary Poisson
process with arrival rate λ̄:

Assumption 2. The time cost incurred in period t by setting the price adjustment hazard
λ ∈ [0, 1] in period t is κλD((λ, 1 − λ)||(λ̄, 1 − λ̄)), where κλ > 0 and λ̄ ∈ [0, 1] are
exogenous parameters.

Here κλ is the marginal cost of entropy reduction in the timing decision, which might or might not equal
the corresponding parameter κπ from the pricing decision.

Rewriting this cost function using definition (9), the optimal adjustment probability at time t solves
the following Bellman equation:

Ot(P,A) = max
λ

(1− λ)V e
t (P,A) + λṼt(A)− κλWt

[
λ ln

(
λ

λ̄

)
+ (1− λ) ln

(
1− λ
1− λ̄

)]
. (14)

Recall that Ot(P,A) represents the continuation value of the firm, net of decision costs, when it still has
the option to adjust, or not to do so. The first order condition from (14) is

V e
t (P,A)− Ṽt(A) = κλWt

[
lnλ+ 1− ln λ̄− ln(1− λ)− 1 + ln(1− λ̄)

]
. (15)

Rearranging, we can solve (15) to obtain12

λt(P,A) =
λ̄ exp

(
Ṽt(A)
κλWt

)
λ̄ exp

(
Ṽt(A)
κλWt

)
+ (1− λ̄) exp

(
V et (P,A)
κλWt

) (16)

=
λ̄

λ̄+ (1− λ̄) exp
(
−Dt(P,A)
κλWt

) , (17)

11Since economists are accustomed to models of perfect rationality, they often equate observing a given information set with
knowing all quantities that can be calculated from that information set. But when rationality is less than perfect, we cannot
equate these two assumptions. Here, we assume firms can observe all relevant shocks and state variables, but we do not equate
this with actually knowing V et (P̃ , A) or knowing the optimal action, and therefore we do not equate it with implementing the
optimal action with probability one.

12Note also that (16) has a well-defined continuous-time limit. If λ̄ is a continuous-time constant hazard against which we
benchmark the costs of a time-varying hazard λt, then the continuous-time analogue of (16) is λt(P,A) = λ̄ exp

(
Dt(P,A)
κλWt

)
.
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where Dt(P,A) is the expected gain from adjustment:

Dt(P,A) ≡ Ṽt(A)− V e
t (P,A). (18)

The weighted binary logit hazard (16) was also derived by Woodford (2008) from a model with a Shan-
non constraint.13 The free parameter λ̄ measures the rate of decision making; concretely, the probability
of adjustment in one discrete time period is λ̄ when the firm is indifferent between adjusting and not
adjusting (i.e. when Dt(P,A) = 0).14

2.2.3 Deriving the Bellman equation

Next, to calculate the value function Vt(P,A), we concatenate the two decision steps described in Secs.
2.2.1-2.2.2. If the firm starts period t with nominal price P , then its value Vt(P,A) ≡ Vt(P,A,Ωt) at
the beginning of t satisfies:

Vt(P,A) = max
λ,π(P̃ )

(
P − Wt

A

)
CtP

ε
t P
−ε + (1− λ)V e

t (P,A) + λ

∫
π(P̃ )V e

t (P̃ , A)dP̃ (19)

− λκπWt

∫
π(P̃ ) ln

(
π(P̃ )

ηt(P̃ )

)
dP̃ − κλWt

[
λ ln

(
λ

λ̄

)
+ (1− λ) ln

(
1− λ
1− λ̄

)]
s.t.

∫
π(P̃ )dP̃ = 1.

This Bellman equation subtracts off the two cost functions seen in the previous subsections.15 There is a
time cost associated with monitoring whether or not a price adjustment is required, which we will call

µt(P,A) ≡ κλ

[
λ ln

(
λ

λ̄

)
+ (1− λ) ln

(
1− λ
1− λ̄

)]
. (20)

The time cost of choosing which new price to set is

τ t(P,A) ≡ λκπ

∫
π(P̃ ) ln

(
π(P̃ )

ηt(P̃ )

)
dP̃ . (21)

Finally, the time devoted to the actual production of goods will be written as

Nt(P,A) ≡ Ct
A

(
Pt
P

)ε
. (22)

Hence, the firm’s total demand for labor hours is Nt(P,A) + µt(P,A) + τ t(P,A).

13Woodford’s (2009) paper only states a first-order condition like (15); his (2008) manuscript points out that the first-order
condition implies a logit hazard of the form (16).

14This model nests Calvo price adjustment as a special case. If we set κπ = 0 and κλ = ∞, then the firm always sets the
optimal price, conditional on adjustment, and adjustment occurs with a constant probability λ̄.

15For expositional transparency, we described pricing and timing above as two separate decisions, each associated with its
own cost function. However, these two steps can equivalently be rewritten as a single decision, subject to a single cost function,
encompassing the alternatives of non-adjustment or of adjustment to any P̃ ∈ ΓPt . For details, see CN18, Sec. 2.2.1. We will
see below that the worker’s problem must generally be written as a single combined decision, except in the special case of linear
labor disutility.
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2.3 Labor market

We next construct a model of nominal wage rigidity analogous to our treatment of nominal price rigidity.
We suppose each worker i is the monopolistic supplier of a specific type of labor Hit, sold at wage Wit

per unit of time. The productivity of worker i’s laborHit is shifted by a shock process Zit, which follows
a time-invariant Markov process on a bounded set, Zit ∈ ΓZ ⊂ [Z,Z]. We will define Nit = ZitHit

as the “effective labor” of worker i. By this definition, we can say that the price of effective labor is
Wit
Zit

. The idiosyncratic shock process Zit represents worker-specific productivity dynamics, which may
include various forms of human capital accumulation.

Firm j’s labor input into goods production, Njt, is defined as a CES aggregate across varieties of
effective labor i, with elasticity of substitution εn. That is,

Njt =

{∫ 1

0
N

εn−1
εn

ijt di

} εn
εn−1

. (23)

It is straightforward to show that under this demand structure, the firm’s optimal hiring satisfies

Hijt ≡
Nijt

Zit
= Zεn−1

it

(
Wit

Wt

)−εn
Njt, (24)

when we define the wage index

Wt ≡

{∫ 1

0

(
Wit

Zit

)1−εn
di

} 1
1−εn

. (25)

Firm j’s nominal wage bill for goods production is then∫ 1

0
WitHijtdi = WtNjt. (26)

We assume that firms use the same CES mix of labor for decision making that they use for goods
production. Then (24) implies that total demand for worker i’s time is Hit = Ht(Wit, Zit), defined by

Hit = Zεn−1
it

(
Wit

Wt

)−εn
Nt ≡ Ht(Wit, Zit), (27)

where Nt represents aggregate labor demand by all firms. Nt includes labor demand for goods produc-
tion, given by (22), and labor demand for decision making, given by (20)-(21).

The worker adjusts her nominal wage Wit intermittently to maximize the value of labor income net
of labor disutility. She faces control costs, both on her timing decision, and on the choice of which
wage to set. We assume workers act in the interest of the households of which they form part, and that
their consumption is fully insured by the household; hence they discount future income at the same rate
β Ptu

′(Ct+1)
Pt+1u′(Ct)

that applies to the household and firm. Now let Lt(W,Z) be the nominal value of a worker
with wage W and productivity Z at the beginning of period t, before supplying labor, and before making
any decisions. As in the case of price decisions, we assume that a wage adjustment in period t becomes
effective in period t+ 1. Therefore the value of setting the nominal wage to an arbitrary new value W̃ is

Let (W̃ , Z) ≡ Et

[
β
Ptu
′(Ct+1)

Pt+1u′(Ct)
Lt+1(W̃ , Z ′)

∣∣∣∣Z] .
We make two assumptions about workers’ decision costs that are analogous to our assumptions about

firms.
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Assumption 3. The time cost of choosing a distribution πW (W̃ ) over nominal wages W̃ ∈
ΓWt is κwD(πW ||ηWt ), where κw > 0 is a constant, and ηWt (W̃ ) is an exogenously-given
benchmark distribution with support ΓWt .

Assumption 4. The time cost incurred in period t by setting the wage adjustment hazard
ρ ∈ [0, 1] in period t is κρD((ρt, 1 − ρt)||(ρ̄, 1 − ρ̄)), where κρ > 0 and ρ̄ ∈ [0, 1] are
exogenous parameters.

Now, let τw be the (expected) amount of time dedicated in period t to setting a new wage, let µw be
the time dedicated to monitoring whether it is a good moment to reset the wage. We can then write the
worker’s wage setting problem in a form analogous to the pricing problem (19):

Lt(W,Z) = max
τw,µw,ρ,πW (W̃ )

WHt(W,Z)− Pt
u′(Ct)

X(Ht(W,Z) + τw + µw) + (1− ρ)Let (Z,W ) + ρ

∫
πW (W̃ )Let (W̃ , Z)dW̃

s.t.
∫
πW (W̃ )dW̃ = 1,

ρκw

∫
πW (W̃ ) ln

(
πW (W̃ )

ηWt (W̃ )

)
dW̃ = τw,

κρ

[
ρ ln

(
ρ

ρ̄

)
+ (1− ρ) ln

(
1− ρ
1− ρ̄

)]
= µw. (28)

Notice that (28) allows for a nonlinear labor disutility function X; this function is scaled by the factor
Pt/u

′(Ct) to express the whole Bellman equation in nominal units.
Recall now that we stated the firm’s decision in two separate steps, (14) and (11), representing the

decision of whether or not to adjust prices, and the decision of what price to set conditional on adjustment,
respectively. This decomposition was possible because we assumed the firm could hire any quantity of
labor at the (aggregate) wage rate Wt, making its labor costs a linear function of its labor demand. But
imposing a linear cost function for a worker’s time use would be highly restrictive. We will compute
an example with a linear labor disutility function X(h) = χh in Sec. 3.1, but we will find that a more
general, nonlinear specification X(h) = χh

1+ζ

1+ζ is needed to match wage adjustment data. But therefore
we cannot simply condition on a given, constant marginal cost of labor: time supplied to firms affects
the marginal cost of time used for each type of decision-making, so the two decisions are analyzed
simultaneously in the wage setting problem (28).

Nonetheless, the policy functions for wage setting and wage adjustment timing resemble the policy
functions from the firm’s problem. Following our previous calculations, we find that if the worker adjusts,
she chooses the following density over nominal wages W̃ :

πWt (W̃ |W,Z) ≡
ηWt (W̃ ) exp

(
Let (W̃ ,Z)
κwxt(W,Z)

)
∫
ηWt (W ′) exp

(
Let (W

′,Z)
κwxt(W,Z)

)
dW ′

, (29)

where xt(W,Z) denotes the marginal disutility of time in period t:

xt(W,Z) ≡ Pt
u′(Ct)

X ′(Htot
t (W,Z)) . (30)
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This depends on the worker’s total time use Htot
t (W,Z):

Htot
t (W,Z) ≡ Ht(W,Z) + τwt (W,Z) + µwt (W,Z), (31)

which sums the labor hoursHt(W,Z) demanded by employers, plus the two components of time implied
by the worker’s wage decision process, τwt (W,Z) and µwt (W,Z). Note also that (30) rescales disutility
to nominal units, for commensurability with the value function Le.

Likewise, if the worker’s beginning-of-period wage and productivity are W and Z, her optimal ad-
justment probability must satisfy:

ρt(W,Z) =
ρ̄ exp

(
L̃t(W,Z)
κρxt(W,Z)

)
ρ̄ exp

(
L̃t(W,Z)
κρxt(W,Z)

)
+ (1− ρ̄) exp

(
Let (W,Z)
κρxt(W,Z)

) (32)

=
ρ̄

ρ̄+ (1− ρ̄) exp
(
−DWt (W,Z)
κρxt(W,Z)

) , (33)

where
DW
t (W,Z) ≡ L̃t(W,Z)− Let (W,Z) (34)

represents the gain in value from adjusting rather than leaving the nominal wage unchanged. The value
of adjusting (net of decision costs) has an analytical solution analogous to (13):

L̃t(W,Z) = κwxt(W,Z) ln

(∫
ηWt (W̃ ) exp

(
Let (W̃ , Z)

κwxt(W,Z)

)
dW̃

)
. (35)

The key to solving the worker’s equations is to calculate the marginal disutility of time, xt(W,Z).
Note that if the aggregate variables Pt, Wt, Ct, and Nt are known, then the labor demand function
Ht(W,Z) is known from (27). Then, in a context of backwards induction, where the function Let (W,Z)
is known, we can use a fixed-point calculation to find xt(W,Z). By guessing the function xt(W,Z),
we can construct the probabilities and the hazard rate from (29) and (32), and then calculate the decision
time components τwt (W,Z) and µwt (W,Z) from the constraints on problem (28). This then gives us total
time use Htot

t (W,Z), so we can update the function xt(W,Z) using (30).16

While this fixed point calculation suffices to find xt(W,Z) and thereby solve the worker’s problem,
it can be avoided in the linear disutility case, where the marginal value of time xt = Ptχ/u

′(Ct) is
independent of the idiosyncratic state (W,Z). This makes the worker’s problem much easier to solve
under linear disutility than it is in the general nonlinear case.17 For this reason, in Sec. 3.1 we first
compute an example with linear disutility, before attempting the higher-dimensional calculation of the
nonlinear case in Sec. 3.2.

16As we showed earlier for the worker’s problem, problem (28) can be rewritten in terms of a single entropy cost term (a
convex function) and a linear objective function. Since labor disutility is also convex, a unique well-defined solution exists
for the maximization problem involved in a single backwards induction step. This allows us to conclude that the algorithm
described here to calculate xt(W,Z) has a unique fixed point, which characterizes the marginal value of time in problem (28).

17While the worker’s logit formulas (29) and (32) look superficially similar to the firm’s logits (12) and (17), the worker’s
problem is generally much harder, because the value of time varies with the worker’s idiosyncratic state (W,Z). Assuming a
constant marginal disutility reduces the worker’s problem to make it similar to the firm’s problem, since the firm’s marginal
cost of time, Wt, is independent of the firm’s idiosyncratic state (P,A).
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2.4 Detrending

Before we describe the dynamics of the distributions of firms and workers, it is helpful to remove the
model’s nominal trend. If we choose the default distributions for nominal prices and wages, ηPt (P̃ ) and
ηWt (W̃ ), so that they can be interpreted as unchanging distributions ηp(p̃) and ηw(w̃) of real prices and
wages, then the firms’ and workers’ decision problems are homogeneous of degree one in nominal prices,
so their Bellman equations can be stated in real rather than nominal terms.

Let Ωt be a nominal aggregate state variable for this economy at time t. This implies that there exist
functions P and W that define the nominal price level and the nominal wage level as a function of Ωt:

Pt = P (Ωt), (36)

Wt = W (Ωt). (37)

We will define real variables by dividing by the aggregate price level, and we will treat all idiosyncratic
real variables in logs. In particular, we define the following idiosyncratic quantities:

pjt ≡ lnPjt − lnP (Ωt), (38)

p̃jt ≡ ln P̃jt − lnP (Ωt), (39)

ajt ≡ lnAjt, (40)

wit ≡ lnWit − lnP (Ωt), (41)

w̃it ≡ ln W̃it − lnP (Ωt), (42)

zit ≡ lnZit, (43)

ξit ≡ x(Wit, Zit,Ωt)/P (Ωt). (44)

Defining the default distributions of real prices and wages to be time invariant places obvious restrictions
on the default distributions of nominal variables. In particular, for any P̃ ≡ P (Ωt)e

p̃, we must have
ηPt (P̃ ) = P̃−1ηp(p̃). Likewise, given W̃ ≡ P (Ωt)e

w̃, we must have ηWt (W̃ ) = W̃−1ηw(w̃).18

Now let Ξt be the real variable constructed by replacing all nominal state variables that are included
in Ωt by their log real counterparts, and by likewise replacing any distributions of nominal idiosyncratic
state variables that are included in Ωt by the corresponding distributions of log real state variables.19 It
is reasonable to conjecture that Ξt is a valid real aggregate state variable for this economy at time t. If
so, there must exist functions m, w, and i that determine the real money supply, the real aggregate wage,
and the inflation rate in terms of Ξ:

mt ≡ Mt/P (Ωt) = m(Ξt), (45)

wt ≡ W (Ωt)/P (Ωt) = w(Ξt), (46)

it ≡ lnP (Ωt)− lnP (Ωt−1) = i(Ξt,Ξt−1). (47)

Likewise, aggregate consumption and labor must be functions of the real state, so that

c(Ξt) = Ct ≡ C(Ωt), (48)

n(Ξt) = Nt ≡ N(Ωt), (49)

18To see this, when we say that there is an unchanging distribution of p̃, we mean that cdfPt (P̃ ) = cdfp(p̃), evaluated at

the point P̃ = Pte
p̃. Using the chain rule, this implies ∂cdfPt

∂P
(P̃ )Pte

p̃ = ∂cdfp

∂p
(p̃). Then since ηPt (P̃ ) ≡ ∂cdfPt

∂P
(P̃ ) and

ηp(p̃) ≡ ∂cdfp

∂p
(p̃) we obtain ηPt (P̃ ) = P̃−1ηp(p̃).

19Here we are not yet describing which variables are included in the real state Ξ. We will identify a candidate for the real
state Ξ in the next subsections, as we describe the real distributional dynamics.
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and firm-specific labor demand can be written as

h(w, z,Ξt) ≡ H(P (Ωt)e
w, ez,Ωt) = ez(εn−1)n(Ξt)w(Ξt)

εne−εnw. (50)

Now, given the real state variable Ξ, the Bellman equations of the firms and workers can be rewritten
in terms of real value functions v and ve that satisfy the identities

v(p, a,Ξ) ≡ V (P (Ω)ep, ea,Ω)

P (Ω)
, (51)

ve(p, a,Ξ) ≡ V e(P (Ω)ep, ea,Ω)

P (Ω)
= βE

{
u′(c(Ξt+1))

u′(c(Ξt))
v(p− it+1, a

′,Ξt+1)

∣∣∣∣ a,Ξt} . (52)

We see in (52) that, absent any nominal price adjustment, a log real price p at time t becomes p− it+1 at
time t+ 1.20 Now, the Bellman equation (19) becomes:

v(p, a,Ξt) = max
λ,πp(p̃)

(
ep − w(Ξt)

ea

)
c(Ξt)e

−εp + (1− λ)ve(p, a,Ξt) + λ

∫
πp(p̃)ve(p̃, a,Ξt)dp̃

− λκπw(Ξt)

∫
πp(p̃) ln

(
πp(p̃)

ηp(p̃)

)
dp̃ − κλw(Ξt)

[
λ ln

(
λ

λ̄

)
+ (1− λ) ln

(
1− λ
1− λ̄

)]
s.t.

∫
πp(p̃)dp̃ = 1. (53)

Obviously, the worker’s Bellman equation (28) can be detrended in analogy with that of the firm. To
do so, we postulate real value functions l and le that satisfy the identities

l(w, z,Ξ) ≡ L(P (Ω)ew, ez,Ω)

P (Ω)
, (54)

le(w, z,Ξ) ≡ Le(P (Ω)ew, ez,Ω)

P (Ω)
= βE

{
u′(c(Ξt+1))

u′(c(Ξt))
l(w − it+1, z

′,Ξt+1)|z,Ξt
}
. (55)

The worker’s Bellman equation can then be rewritten in real terms as follows:

l(w, z,Ξt) = max
τw,µw,ρ,πw(w̃)

ewh(w, z,Ξt)−
X(h(w, z,Ξt) + τw + µw)

u′(c(Ξt))
+ (1− ρ)let (w, z,Ξt) + ρ

∫
πw(w̃)le(w̃, z,Ξt)dw̃

s.t.
∫
πw(w̃)dw̃ = 1,

ρκw

∫
πw(w̃) ln

(
πw(w̃)

ηw(w̃)

)
dw̃ = τw,

κρ

[
ρ ln

(
ρ

ρ̄

)
+ (1− ρ) ln

(
1− ρ
1− ρ̄

)]
= µw. (56)

20To derive (52) step by step, note that

P (Ω)ve(p, a,Ξt) ≡ V e(P (Ω)ep, ea,Ω) = E

{
β
P (Ωt)u

′(C(Ωt+1))

P (Ωt+1)u′(c(Ωt))
V (P (Ωt)e

p, A′,Ωt+1)

∣∣∣∣A,Ωt}
= E

{
β
P (Ωt)u

′(C(Ωt+1))

P (Ωt+1)u′(C(Ωt))
V (P (Ωt+1)ep−it+1 , A′,Ωt+1)

∣∣∣∣A,Ωt}
= P (Ωt)E

{
β
u′(c(Ξt+1))

u′(c(Ξt))
v(p− it+1, a

′,Ξt+1)

∣∣∣∣ a,Ξt} .
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Analyzing (56), it is straightforward to show that the chosen distribution of wages takes the form

πwt (w̃|w, z) ≡
ηw(w̃) exp

(
let (w̃,w)
κwξt(w,z)

)
∫
ηw(w′) exp

(
let (w

′,z)
κwξt(w,z)

)
dw′

, (57)

where

ξt(w, z) ≡
X ′(ht(w, z) + τwt (w, z) + µwt (w, z))

u′(Ct)
(58)

is the worker’s marginal disutility of time spent working, expressed in units of consumption goods.
Similarly, using the first-order condition for ρ, we derive the following adjustment hazard:

ρt(w, z) =
ρ̄ exp

(
l̃t(w,z)
κρξt(w,z)

)
ρ̄ exp

(
l̃t(w,z)
κρξt(w,z)

)
+ (1− ρ̄) exp

(
let (w,z)
κρξt(w,z)

) . (59)

Thus, the decision noise in both the timing choice and the wage-setting choice is proportional to the
worker’s marginal disutility of labor.

For purposes of backwards induction, to characterize the worker’s decision in a given state (w, z,Ξ),
it suffices to find the unique value of ξt(w, z) that solves (58). The time allocations to the timing decision
and the wage-setting decision are

µwt (w, z) = κρ

[
ρt(w, z) ln

(
ρt(w, z)

ρ̄

)
+ (1− ρt(w, z)) ln

(
1− ρt(w, z)

1− ρ̄

)]
, (60)

τwt (w, z) = κwρt(w, z)

∫
πw(w̃|w, z) ln

(
πw(w̃|w, z)
ηw(w̃)

)
dw̃. (61)

These can be calculated using (57) and (59); their sum is strictly decreasing as a function of ξ. Since
marginal disutility increases strictly with total time use (and since ht(w, z) does not depend on ξ), the
right-hand side of (58) can be viewed as a strictly decreasing function of ξ. Therefore (58) can be solved
by bisection to give a unique solution ξt(w, z) ≥ 0 in any given state (w, z,Ξt).

2.5 Distributional dynamics

The distribution of firms’ prices and productivities, and likewise that of workers’ wages and productivi-
ties, evolves over time as firms and workers respond to idiosyncratic and aggregate shocks. We first state
the equations governing the dynamics of the distribution across firms.

We continue to use the notation Pjt to refer to the nominal price at which firm j produces in period t,
prior to adjustment. This may of course differ from its price P̃jt at the end of t, when price adjustments
are realized. Therefore we will distinguish the beginning-of-period distribution of prices and log produc-
tivities, Φt(Pjt, ajt), from the distribution of prices and log productivities at the end of t, Φ̃t(P̃jt, ajt).
But instead of tracking nominal prices Pjt, it is simpler to focus on log real prices pjt. Therefore, in
analogy to the nominal distributions, we define Ψt(pjt, ajt) as the real distribution at the beginning of t,
when production takes place, and Ψ̃t(p̃jt, ajt) as the real distribution at the end of t. Finally, we also use
lower-case letters to represent the joint densities associated with these distributions, which we write as
φt(Pjt, ajt), φ̃t(P̃jt, ajt), ψt(pjt, ajt), and ψ̃t(p̃jt, ajt), respectively.21

21Our notation in this section assumes that all densities are well-defined on a continuous support, but we do not actually
impose this assumption on the model. With slightly more sophisticated notation we could allow explicitly for distributions with
mass points, or with discrete support.
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Two stochastic processes drive the dynamics of the distribution. First, there is the Markov process
for firm-specific log productivity, which we can write in terms of the following c.d.f.:

S(a′|a) = prob(aj,t ≤ a′|aj,t−1 = a), (62)

or in terms of the corresponding density function:

s(a′|a) =
∂

∂a′
S(a′|a). (63)

Thus, suppose that the density of nominal prices and log productivities at the end of period t − 1 is
φ̃t−1(P̃ , a). The density at the beginning of t, after productivity shocks, will therefore be

φt(P̃ , a
′) =

∫
s(a′|a)φ̃t−1(P̃ , a)da. (64)

But this equation conditions on a given nominal price P̃ . Holding fixed a firm’s nominal price, its real
log price is changed by inflation, from p̃i,t−1 to pi,t ≡ p̃i,t−1− it. Therefore the density of real log prices
and log productivities at the beginning of t is given by

ψt
(
p̃− it, a′

)
=

∫
s(a′|a)ψ̃t−1(p̃, a)da, (65)

and hence the cumulative distribution at the beginning of t, in real terms, is

Ψt(p, a
′) =

∫ p ∫ a′ (∫
s(b|a)ψ̃t−1 (q + it, a) da

)
db dq. (66)

The second stochastic process that determines the dynamics is the process of real price updates,
which we have defined in terms of a conditional density of logit form in (12). A firm with real log price
p and log productivity a at the beginning of period t adjusts its price with probability λ

(
dt(p,a)
κλwt

)
, where

dt(p, a) ≡ ṽt(a)− vet (p, a). (67)

Upon adjustment, its new real log price is distributed according to πt(p̃|a). Therefore, if the density of
firms at the beginning of t is ψt(p, a), the density at the end of t is given by

ψ̃t(p̃, a) =

(
1− λ

(
dt(p̃, a)

κλwt

))
ψt(p̃, a) +

∫
λ

(
dt(p, a)

κλwt

)
πt(p̃|a)ψt(p, a)dp. (68)

The cumulative distribution at the end of t is simply given by integrating up this density:

Ψ̃t(p, a) =

∫ p̃ ∫ a

ψ̃t(q, b)db dq. (69)

The dynamics of wages and worker productivities is analogous, except that an individual worker
may die and be replaced by a new worker with probability 1 − βD per period. It suffices to go directly
to the real log dynamics, without developing notation for the nominal dynamics. Let Ψw

t (wit, zit) be
the distribution of real log prices and log worker productivities at the beginning of the period, when
production takes place, and let Ψ̃s

t (w̃it, zit) be the corresponding distribution of surviving workers at
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the end of the period. We write the densities associated with these distributions as ψwt (wit, zit) and
ψ̃
s

t (w̃it, zit), respectively.
Now, consider a worker with real log wage w and log productivity z at the beginning of period t; she

adjusts her wage with probability ρ
(
dwt (w,z)
κρξt(w,z)

)
, where

dwt (w, z) ≡ l̃t(w, z)− let (w, z). (70)

Upon adjustment, her new real log wage is distributed according to πwt (w̃|w, z). Therefore, if the density
of workers at the beginning of t is ψwt (w, z), the density at the end of t is given by

ψ̃
w

t (w̃, z) =

(
1− ρ

(
dwt (w̃, z)

κρξt(w̃, z)

))
ψwt (w̃, z) +

∫
ρ

(
dwt (w, z)

κρξt(w, z)

)
πwt (w̃|w, z)ψwt (w, z)dw. (71)

The cumulative distribution at the end of t integrates up this density:

Ψ̃w
t (w̃, z) =

∫ w̃ ∫ z

ψt(q, b)db dq. (72)

A worker alive in period t survives to period t + 1 with probability βD. The worker’s productivity,
conditional on survival, is driven by the Markov process Sz:

Sz(z′|z) = prob(zi,t+1 ≤ z′|zi,t = z), (73)

with the following density function:

sz(z′|z) =
∂

∂z′
S(z′|z). (74)

Meanwhile, holding fixed a worker’s nominal wage, her real log wage is changed by inflation, from
w̃i,t at the end of t, to wi,t+1 ≡ w̃i,t − it+1. Therefore the density of real log wages and log worker
productivities among surviving workers at the beginning of t+ 1 is given by

ψst+1

(
w̃ − it+1, z

′) =

∫
sz(z′|z)ψ̃wt (w̃, z)dz. (75)

Hence the cumulative distribution at the beginning of t integrates up the density in (75) and adds on the
component of new-born workers, who have distribution Ψ0

t :

Ψw
t+1(w, z) = βD

∫ w ∫ z (∫
sz(b|y)ψ̃

w
t (q + it+1, y) dy

)
db dq + (1− βD)Ψ0

t+1(w, z). (76)

Taking account of birth and death matters here because it allows us to impose a productivity process
that has an upward trend over the course of an individual’s working life: a worker typically ends her
career at a wage higher than the one she started with. We find that this upward trend is important for
matching the distribution of wage adjustments. We denote the distribution of wages and productivity for
newborn workers at time t by Ψ0

t .
For simplicity, we assume that the wage of a newborn worker is the wage that she would set, con-

ditional on her productivity, if her wage were costlessly flexible at all times. We make this simplifying
assumption to avoid modeling an initial decision-making state prior to beginning life as a worker. Since
our analysis only addresses the properties of wage changes, ignoring the level of the initial wage, this
simplifying assumption has a negligible impact on the empirical properties we will document here.
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2.6 Aggregate consistency and monetary policy

When supply equals demand for each good j, total supply and demand of effective labor satisfy

Nt − µt − τ t =

∫ 1

0

Cjt
Ajt

dj = Ct

∫ ∫
ψt(p, a) exp(−εp− a)da dp ≡ ∆tCt. (77)

Here µt is total time devoted to deciding whether to adjust prices, and τ t is total time devoted to choosing
which price to set by firms that adjust:

µt =

∫ ∫
ψt(p, a)µt(p, a)dadp (78)

τ t =

∫ ∫
ψt(p, a)τ t(p, a)dadp (79)

where firm-specific decision times are given by (20)-(21). Equation (77) also defines a measure of
price dispersion, ∆t ≡ P εt

∫ 1
0 P

−ε
jt A

−1
jt dj, weighted to allow for heterogeneous productivity. As in Yun

(2005), an increase in ∆t decreases the goods produced per unit of labor, effectively acting like a negative
aggregate productivity shock.

In nominal terms, the price level and wage level are given as follows∫ ∫
P 1−εφt(P,A)dAdP = P (Ωt)

1−ε. (80)

∫ ∫ (
W

Z

)1−εN
φWt (W,Z)dZ dW = W (Ωt)

1−εN . (81)

Given (80), the real price level is one by definition:∫ ∫
exp((1− ε)p)ψt(p, a)da dp = 1. (82)

The real wage level satisfies∫ ∫
exp((1− εN )(w − z))ψWt (w, z)dz dw = w(Ξt)

1−εN . (83)

On the policy side, we consider a monetary authority that generates an exogenous process for the
money growth rate. We assume the nominal money supply is affected by an AR(1) shock process g,22

gt = φggt−1 + εgt , (84)

where 0 ≤ φg < 1 and εgt ∼ i.i.d.N(0, σ2
g). Here gt represents the time t rate of money growth:

Mt/Mt−1 ≡ µt = µ∗ exp(gt). (85)

Seigniorage revenues are paid to the household as a lump sum transfer TMt , and the government budget
is balanced each period, so that Mt = Mt−1 + TMt .

22In related work (Costain and Nakov 2011) we have studied state-dependent pricing when the monetary authority follows
a Taylor rule. Our conclusions about the degree of state-dependence, microeconomic stylized facts, and the real effects of
monetary policy were not greatly affected by the type of monetary policy rule considered. Therefore we focus here on the
simple, transparent case of a money growth rule.
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To describe the aggregate state of the economy, we must take into account aggregate shocks and the
distribution of idiosyncratic states. Since nominal prices are predetermined under the timing we have
assumed here, it is natural to conjecture that the nominal state of the economy can be summarized by the
following objects:

Ωt ≡ (Mt, gt,Φt,Φ
w
t ). (86)

Since the model is homogeneous of degree one in nominal variables, the corresponding real state variable
would be:

Ξt ≡ (gt,Ψt,Ψ
w
t ). (87)

We will show that this is a valid state variable for the economy by constructing an equilibrium in terms
of Ξ.

3 Results

3.1 Special case: linear labor disutility

As we discussed in Sec. 2.3, our model is much simpler to compute when labor disutility is linear;
therefore we will explore the linear case before moving on to a nonlinear specification in Sec. 3.2. We
simulate and compare several versions of the model with varying degrees of noise in the pricing and
wage-setting processes. At the micro level, we study how decision costs affect the frequency and the
distribution of price and wage adjustments; at the macro level, we study which noise margin contributes
most to the non-neutrality of monetary shocks.

3.1.1 Parameters

Utility from consumption and money holdings, and disutility from labor, are u(C) = 1
1−γ (C1−γ − 1),

v(m) = ν ln(m), and X(h) = χ
1+ζh

1+ζ , respectively; we initially set ζ = 0 to study the linear case.
Following Golosov and Lucas (2007), we set γ = 2, ν = 1, χ = 6, and ε = 7, and we set the same the
elasticity of substitution across varieties of labor as that across goods: εN = 7. The discount factor is set
to β = 0.9967 (a four percent annual discount rate).

We simulate the model at monthly frequency on a discrete grid. The productivity processes for firms
and workers are assumed to follow discretized approximations of the following AR(1) processes:

ajt =ρaajt−1 + εat , (88)

zit =ρzzit−1 + εzt , (89)

where εat and εzt are i.i.d. normal shocks with mean zero. Thus the variances of ajt and zit are σ2
a = σ2

εa
1−ρ2a

and σ2
z = σ2

εz
1−ρ2z

, where σ2
εa and σ2

εz are the variances of the innovations εat and εzt , respectively.
Note that a linear disutility specification severely limits our ability to match the wage distribution,

because it means the wage is invariant to idiosyncratic productivity shocks. Therefore we postpone
estimating the productivity processes until we study the nonlinear specification. Instead, we simply fix
the standard deviations of the productivity shocks to σa = 0.06 for firms and σz = 0.04 for workers;
both productivity processes are assumed to have monthly autocorrelation 0.8. We assume two percent
annual money growth in steady state, consistent with our retail pricing data (discussed below).

To analyze the micro and macro implications of decision costs, we compare six calibrations (listed
in Table 1) that vary the noise levels κπ, κλ, κw, and κρ. All six calibrations are variations on the
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Table 1: Adjustment parameters for linear disutility simulations.

V1 V2 V3 V4 V5 V6
κπ = κλ 0.017 0.0017 0. 00017 0.017 0.017 0.00017
κw = κρ 0.017 0.017 0.017 0.0017 0.00017 0.00017
Note: Baseline noise κ0 ≡ 0.017 is estimated in CN18 by fitting retail price change data.

benchmark case V1, in which the four noise parameters are set to κπ = κλ = κw = κρ = κ0 ≡ 0.017,
implying substantial stickiness both for prices and for wages. The benchmark noise level κ0 = 0.017 is
the estimate of CN18, who found that this value, together with λ̄ = 0.2, gave the best fit to data on the
frequency and distribution of retail price adjustments under the constraint κπ = κλ. Following CN18,
we set both λ̄ = 0.2 and ρ̄ = 0.2 in all versions V1-V6.

Versions V2-V6 vary the noise parameters while fixing all remaining parameters. Versions V2 and
V3 reduce price stickiness relative to the benchmark V1, lowering κπ and κλ first to κ0/10 = 0.0017
and then to κ0/100 = 0.00017, which makes prices almost perfectly flexible. Specifications V4 and V5
instead reduce wage stickiness relative to the benchmark V1, lowering both κw and κρ first to κ0/10
and then to κ0/100, making wages almost perfectly flexible. Version V6 assumes both margins are very
flexible, setting all noise parameters to κ0/100.

3.1.2 Data

Table 2, Figure 2, and subsequent results will compare the various calibrations of our model to microdata
on price and wage adjustments. As in CN18, our pricing data come from the Dominick’s supermarket
dataset documented by Midrigan (2011).23 These data represent weekly regular price changes, excluding
temporary sales, and are displayed (in logs) as a blue-shaded histogram in the left column of Fig. 2. We
aggregate weekly adjustment rates to monthly rates for comparability with most related studies. We
exclude sales because recent literature has shown that monetary nonneutrality depends primarily on the
frequency of “regular” or “non-sale” price changes (see for example Eichenbaum et al., 2011; Guimaraes
and Sheedy, 2011; or Kehoe and Midrigan, 2014).

Our wage change data are from the International Wage Flexibility Project (IWFP), and are shown as
a blue-shaded histogram in the right column of Fig. 2. These data are taken from Fig. 2a of Dickens et al.
(2007), which documents the results of the IWFP. The figure aggregates histograms of wage adjustments
across multiple countries. While most of the underlying national data are drawn from surveys of firms,
they refer to annual nominal wage changes of individual workers who remain employed by the same
firm. The IWFP focused on annual changes because it observed a widespread tendency for wages to
change once a year for many workers in many countries, which in turn means that much of the available
survey data addresses annual changes. Clearly this makes our data on wage changes less than perfect
for comparison with our price change data, which are at weekly frequency. Nonetheless, to try to get a
quantitative benchmark for our theoretical model, we will take the IWFP data at face value.24 Therefore

23We are grateful to Virgiliu Midrigan for making his price data available to us, and to the James M. Kilts Center at the Univ.
of Chicago GSB, which is the original source of those data.

24Grigsby, Hurst, and Yildirmaz (2018) study wage adjustment using higher-frequency data more comparable to those from
the retail price adjustment literature. In U.S. data from a large payroll data processing firm, they find a wage adjustment
probability of 26.0% quarterly and 72.7% annually; the mean absolute wage change, conditional on adjustment, is 10.7%.
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Table 2: Evaluating the linear disutility model with different values of κπ, κλ, κw and κρ

Data Sticky Decreasing price stickiness Decreasing wage stickiness Flexible
V1 V2 V3 V4 V5 V6

Consumption 0.3496 0.3508 0.3514 0.3501 0.3489 0.3522
Labor 0.3530 0.3493 0.3481 0.3535 0.3523 0.3488
Wage 0.8576 0.8638 0.8666 0.8576 0.8576 0.8666

Prices Wages Prices Wages Prices Wages Prices Wages Prices Wages Prices Wages Prices Wages
Freq. of change, %/mo. 10.2 8.3 10.1 6.02 22.5 6.03 54.4 6.04 10.1 6.41 10.41 7.28 54.4 6.95

Mean change, % 1.60 5.10 1.68 2.83 0.76 2.82 0.31 2.82 1.68 2.66 1.68 2.34 0.31 2.45
Mean abs(change), % 9.90 6.47 8.57 6.14 6.80 6.16 4.76 6.16 8.57 2.70 8.57 1.98 4.76 2.29
Std. of changes, % 13.2 6.52 10.6 8.53 7.50 8.53 5.30 8.52 10.6 2.10 10.6 1.26 5.26 1.79
Skewness of changes -0.42 0.35 -0.11 -0.41 -0.15 -0.41 -0.08 -0.41 -0.11 -0.91 -0.11 -1.06 -0.08 -1.26
Kurtosis of changes 4.81 4.39 3.20 10.0 1.82 9.77 1.94 9.66 3.20 5.21 3.20 3.62 1.94 3.33
Percent increases 65.1 86.5 58.5 72.1 55.5 72.0 54.0 71.9 58.5 92.2 58.5 99.1 54.0 92.0
Changes ≤5% 35.5 43.0 28.8 48.1 27.0 47.9 60.7 47.9 28.8 91.7 28.8 100 60.8 99.9
Changes ≤2.5% 12.0 11.8 14.2 24.7 8.90 24.6 19.9 24.6 14.2 57.4 14.2 81.1 20.0 61.6

Std. of prices, wages, % 5.26 3.07 5.63 3.08 6.06 3.08 5.26 1.21 5.26 0.75 6.06 0.96

Resetting cost, % rev.∗ 0.43 0.33 0.08 0.34 0.01 0.34 0.43 0.06 0.43 0.01 0.01 0.00
Timing cost, % rev.∗ 0.34 0.38 0.05 0.38 0.01 0.39 0.34 0.05 0.34 0.01 0.01 0.01
Loss relative to flex, %† 1.67 0.92 0.38 0.95 0.05 0.94 1.67 0.13 1.67 0.01 0.05 0.01
∗Note: Costs µ, µw, τ , and τw are expressed as percentages of average revenues (for firms) or average labor income (for workers).
†Note: Gain accruing to a single firm or worker not constrained by decision costs (κ = 0), relative to constrained, as % of average revenues (firms) or labor income (workers).
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in Table 2 we report that the monthly frequency of nominal wage adjustment is 1/12=0.083, and we
calculate statistics about nominal wage changes directly from the IWFP histogram.

3.1.3 Steady-state results: linear disutility

Table 2 compares steady-state statistics on price and wage adjustments as the noise parameters vary. Note
first that as we move from the benchmark V1 to the low-noise specification V6, aggregate consumption
increases while total labor hours decrease. This is to be expected, as the overall efficiency of the economy
increases when there are less frictions. The price adjustment frequency more than quintuples, rising from
10.1% to 54.4% per month. The wage adjustment frequency instead rises only slightly, from 6.02% to
6.95% monthly.

There are also some small cross effects, from price rigidity to wage adjustment, and vice versa. While
decreasing wage rigidity slightly increases the price adjustment frequency (it rises from 10.1% in V4 to
10.4% in V5), a decrease in price rigidity may instead decrease the frequency of wage changes (which
falls from 7.28% in V5 to 6.95% in version V6).

As price rigidity decreases (comparing V1, V2, and V3), the absolute size of price changes falls
from 8.57% to 4.76%. Likewise, their standard deviation falls from 10.6% to 5.30%, and their kurtosis
decreases from 3.20 to 1.94. Price resetting and timing costs (µ and τ ) fall as a fraction of revenues,
and the losses relative to the fully flexible case fall precipitously, to only a few basis points. The effects
of decreased wage rigidity are analogous. Comparing V1 with V4 and V5, the absolute size of wage
changes falls from 6.14% to 1.98%; their standard deviation falls dramatically, from 8.53% to 1.26%,
and their kurtosis likewise falls from 10.0 to 3.62. The costs associated with wage resetting and wage
reset timing (µw and τw) almost vanish, as a fraction of labor income, in specifications V5 and V6.

Again, there are contrasting cross-effects between prices and wages. Decreased wage rigidity has no
observable effect on the absolute size of price adjustments. Decreased price rigidity is instead observed
to increase the size of wage changes (compare V5 and V6).

The statistics in Table 2 are drawn from the steady-state distributions of nonzero log price and wage
changes, which are plotted as histograms in Fig. 2. Black lines represent the predicted distributions from
the various model versions; the blue shaded areas show the distributions from microdata. The left column
of the figure shows how the histogram of nonzero log price changes varies as we decrease the noise in
the price decision, comparing versions V1, V2, and V3. The variance of the price change distribution
in the benchmark version V1 is similar to that of the data, though the model-generated distribution is
smoother and less bimodal than the data. As κπ and κλ decrease, the model histogram becomes much
more bimodal than the data, displaying two sharp spikes like those from the menu cost model of Golosov
and Lucas (2007). In contrast, the right column of the figure shows that the distribution of nonzero log
wage changes remains unimodal, becoming ever more concentrated around a single sharp peak as we
decrease the noise in wages from version V1 to V4 and V5. The peak of the wage change histogram lies
above zero, reflecting the nominal trend in our simulations; likewise, the mean price change is positive.

Thus, as decision noise decreases, price adjustments increasingly resemble the familiar (S, s) be-
havior associated with a menu cost model. Errors in pricing and timing smooth out the distribution of
changes under calibration V1, but as noise is reduced, the preponderance of price changes occur around
two upper and lower thresholds. Very small changes are rare, because it is not worth paying the cost of
changing the price when it is already near its target value. The chosen decision cost κπD(π||η) decreases

Considering job stayers only, they find a 66.3% annual wage adjustment probability, with a mean absolute change of 6.34%.
While their data support a somewhat higher degree of wage variation than the IWFP data in our graphs, nonetheless the order
of magnitude is similar.
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Figure 2: Distribution of nonzero price and wage changes: varying stickiness (ζ = 0).
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Left column: Effect of decreasing price stickiness (versions V1, V2, V3) on distribution of nonzero price adjustments.

Right column: Effect of decreasing wage stickiness (versions V1, V4, V5) on distribution of nonzero wage adjustments.
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as κπ declines; this is why the distance between the two peaks of the price change histogram decreases
as we move down the left panels of Fig. 2 from version V1 to V2 and V3.

Linear labor disutility is the reason why the wage change histogram behaves differently than the
price change histogram in these simulations. Given linear disutility, if decisions were perfectly costless,
labor supply would respond elastically to productivity at the wage wt = εNχ

εN−1/u
′(Ct): worker i would

respond to a positive shock to zi,t by supplying all the additional labor demanded, instead of setting
a higher wage. Error-prone choice spreads wages out around this frictionless optimum, as we see in
version V1 (top, right panel of Fig. 2). But as the noise in wage adjustment decreases (moving down the
right panels from V1 to V4 and V5), wage changes are ever more tightly concentrated around a single
peak slightly above zero.

The sharp peak of the wage change histogram in case V5 corresponds to small intermittent upward
adjustments in response to the nominal trend of the model. Although the worker faces idiosyncratic
shocks, it is not optimal to respond to them by adjusting the wage (given linear disutility). Similar
behavior may occur in a fixed menu cost model, if there is positive trend inflation but no idiosyncratic
shocks: although there are implicitly two “(S,s) bands”, the only observed adjustments are the upward
bumps that occur when the nominal trend drives the worker’s real wage down past its lower threshold.

This analysis points to a possible way forward for better modeling the behavior of wages. On one
hand, it will be crucial to allow for nonlinear labor disutility, so that workers have an incentive to vary
the wages in response to idiosyncratic shocks, which will spread out the distribution and possibly make
it bimodal, as is the case in the data. On the other hand, it will also be useful to allow for a trend
in labor productivity over the life cycle. The wage change histogram from the IWFP data shows far
more upward than downward adjustments. Likewise, those data imply average monthly wage growth
of 0.43% for continuing workers, while our retail price data imply that prices rise by only 0.16% per
month on average. Imposing demographic turnover on the model, so that the expected wage growth of
continuing workers can exceed that of the workforce as a whole, due to an expected positive idiosyncratic
productivity trend over the lifetime, will help match both of these facts.

Figure 3 further documents adjustment behavior in our model by graphing the logit policy functions
from the benchmark case V1. The left panels display the logit probabilities of each price (wage), condi-
tional on cost, while the right panels show the adjustment probabilities conditional on the current price
(wage) and cost. Each function is graphed in two ways, for greater clarity: as a surface plot (first and
third rows) and as multiple overlaid cross-sections (second and fourth rows). The upper left panel of
the graph shows a surface plot of the logit probabilities π(p|a) as a function of the firm’s cost shock −a
and its possible prices p. Just below this, in the second row, we see the smooth, bell-shaped probability
distributions π(p|a) corresponding to each possible productivity level a. If the firm’s cost shock is high
(i.e. a is low, shown in red in the graph) then its chosen probability distribution shifts towards higher
prices. Looking to the right column, we see that the adjustment probability λ(p, a) approaches zero for
any p that is near the modal value of π(p|a).

The bottom panels of Fig. 3 are analogous, but instead show the worker’s policy functions πw(w|z)
and ρ(w, z). Notice that the worker’s logit probabilities πw(w|z) are concentrated around the same w,
regardless of z (see the bottom left panel). Regardless of her productivity shock, the worker prefers the
same real wage, which explains the tight unimodal distribution of wage changes seen earlier in Fig. 2.

3.1.4 Dynamic results: linear disutility

Next, we turn to the macroeconomic implications of the model, comparing impulse responses to money
shocks across versions V1, V3, V5, and V6 in Figure 4. The figure shows the impulse responses to a 1%
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Figure 3: Adjustment behavior. Benchmark model (V1) with sticky prices and sticky wages (ζ = 0).

Notes: Distribution of adjustments and adjustment probability for prices (top four panels) and wages (bottom four panels) under

linear labor disutility (ζ = 0).

Left panels: 3d plots show price (wage) choice probabilities, conditional on cost (productivity).

Left panels: 2d plots show price (wage) choice probabilities, conditional on each possible cost (productivity).

Right panels: 3d plots show adjustment probabilities, conditional on current price (wage) and cost (productivity).

Right panels: 2d plots show adjustment probabilities, conditional on each possible cost (productivity).

Colors in 2d plots: For firms, green represents low cost (high a). For workers, green represents high productivity (high z).
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Figure 4: Money growth shock: effects of nominal rigidity. Error-prone adjustment, ζ = 0.
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Impulse responses of inflation and consumption to money growth shock with autocorrelation 0.8 (monthly), under linear labor

disutility (ζ = 0).

Black: Benchmark (V1), both prices and wages sticky. Red: V3, flexible prices and sticky wages.

Blue: V5, sticky prices and flexible wages. Green: V6: both prices and wages flexible.

money growth shock, with monthly autocorrelation 0.8, on consumption, labor, price and wage inflation,
and the real wage. In the benchmark specification V1 (black with circles), consumption and labor rise by
more than 2% on impact, then revert smoothly and gradually with a half-life of roughly six months. Price
inflation and wage inflation both rise persistently to a rate of roughly 0.5%. Wage inflation is slightly
higher than price inflation, causing the real wage to peak at roughly 0.4% above steady state after four
months.

In contrast, in the flexible specification V6 (green), both price and wage inflation spike on impact,
with an 4% jump in prices and wages. Consumption and labor increase by half a percent in the period
of impact only, then return to their steady state levels. Thus, current and expected money growth feeds
rapidly into prices, and its real impact is small and transitory.

It is particularly interesting to compare specifications V3 (red, with sticky wages but flexible prices)
and V5 (blue, with sticky prices but flexible wages). The key takeaway is seen in the response of con-
sumption – version V3, with wage stickiness only, comes very close to the baseline model V1 with both
price and wage stickiness. The reason is that wage stickiness keeps firms’ marginal costs from adjusting
rapidly, so even though prices are much more flexible in version V3 than V1, the impulse response of
price inflation is quite similar in both cases. Both wages and prices adjust gradually in version V3, giving
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a real impact on consumption and output that is almost as large and persistent as we saw in case V1.
In contrast, specification V5, with sticky prices and flexible wages, implies an immediate burst of

wage inflation when the money supply shock hits– wages rise 3% on impact.25 In spite of price stickiness,
this rise in nominal marginal costs also causes prices to increase by 1.2% on impact, more than they do
in cases V1 and V3. Overall, the effect is a large increase in real wages, which discourages labor demand
(firms’ profits fall sharply upon monetary stimulus) and thus drives down the persistence of the real
effects of the money shock.

Summarizing, wage stickiness is substantially more important for monetary non-neutrality than price
stickiness alone. Sticky wages imply that firms’ marginal costs only adjust slowly in response to the
shock, which slows down firms’ price adjustments even if prices are relatively flexible. The importance
of wage rigidity for propagation of nominal shocks to real variables provides support for New Keyne-
sian mechanisms in the light of empirical evidence against procyclical markups of price over marginal
cost (Nekarda and Ramey, 2013). On the other hand, these findings do not offer any strong macroeco-
nomic reason to favor the benchmark specification V1, with both rigidities, versus version V3, where
only wages are rigid. Empirical studies rarely find a significantly nonzero response of the real wage to
monetary policy shocks (see for example Christiano et al., 2005; McCallum and Smets, 2006; Olivei
and Tenreyro, 2007; Christiano et al., 2016). Thus it is easy to reject the strongly procyclical real wage
(and countercyclical profits) of specification V5, but both versions V1 (with a mildly positive real wage
response) and V3 (with a mildly negative response) lie within the range of behavior consistent with
macroeconomic evidence.

Finally, to isolate the effects of state-dependence in prices and wages, we compare the impulse
responses of Fig. 4 to those of an otherwise identical economy (same model, same parameters, and
same finite grid approximation) in which firms’ price changes and workers’ wage changes are governed
by the Calvo (1983) mechanism. That is, firms (workers) reset their prices (wages) with a constant,
exogenously-fixed probability per month, and the new price (wage) is optimally chosen (it is optimal
taking into account the fact that future adjustments will take place at random times in the future). For
comparability with the simulations reported previously, we impose the adjustment hazards found in our
state-dependent versions V1-V6 on the Calvo versions V1C-V6C. In other words, although the hazard is
exogenously fixed in each Calvo simulation, we vary the hazard across specifications V1C-V6C.

The Calvo simulation results are displayed in Figure 5. Three findings stand out. First, the Calvo
model generates much more persistence than the state-dependent models seen in Fig. 4; the half-life
of the impulse responses of consumption and labor rises to roughly 15 months (the time span on the
horizontal axis of Fig. 5 is twice as long as that in Fig. 4). This highlights the importance of “selection
effects” in nominal adjustments: in our logit framework, firms (workers) that face a more costly deviation
between their current and desired prices (wages) are more likely to adjust, which speeds up aggregate
adjustment relative to the Calvo framework. Second, the impulse responses of the Calvo specifications
V1C, V3C, V5C, and V6C are quantitatively quite similar (except in their implications for real wages).
This reflects the fact that the frequency of wage adjustment changes very little in our state-contingent
simulations V1-V6, and therefore the wage adjustment hazards we plug into our Calvo model do not
differ much across simulations V1C-V16. Again, wage stickiness is the more important form of nom-
inal rigidity, so versions V1C-V6C behave similarly even though they reflect very different degrees of
price stickiness. Finally, the qualitative behavior of (all) the Calvo specifications resemble that of our
benchmark state-dependent model V1: consumption, labor, price inflation, and wage inflation all jump

25Note that the impulse responses for case V5 are quantitatively very similar to those reported in our earlier paper, CN18,
which studied a model with price stickiness only. The decision cost parameters for price adjustment in model V5 are taken
from CN18, so specification V5 essentially reproduces our previous paper’s results.
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Figure 5: Money growth shock: effects of nominal rigidity. Calvo adjustment, ζ = 0.
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Impulse responses of inflation and consumption to money growth shock with autocorrelation 0.8 (monthly), under Calvo ad-

justment with linear labor disutility (ζ = 0).

Black: Benchmark (V1C), both prices and wages sticky. Red: V3C, flexible prices and sticky wages.

Blue: V5C, sticky prices and flexible wages. Green: V6C: both prices and wages flexible.

on impact after a money supply shock, and then smoothly revert to their means. The real wage rises,
but by much less than it does in state-dependent version V5. Thus, the dynamic predictions of the Calvo
framework are in many ways consistent with those of a state-dependent model, as long as we adjust
hazards appropriately and bear in mind that the Calvo setup exaggerates aggregate nominal persistence.

3.2 Main results: Nonlinear disutility

3.2.1 Parameter estimation

As we discussed above, generating a nontrivial wage distribution will require nonlinear disutility of
labor. Therefore, we now compute a nonlinear specification, setting X(h) = χ

1+ζh
1+ζ , with ζ = 0.5.

We estimate parameters for this model version by matching the steady-state model-generated adjustment
hazards and adjustment histograms to the Dominick’s pricing data and IWFP wage adjustment data
discussed earlier; the estimates are stated in Table 3. Thus, we seek to match the observed average price
and wage adjustment frequencies λDom and ρIFWP in the Dominick’s and IWFP data, as well as the
corresponding histograms of nonzero log price changes and nonzero log wage changes, which we denote
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Table 3: Parameters for nonlinear disutility simulations.

Parameter estimates for nonlinear disutility benchmark model (V1N):
Firms Workers

Adjustment parameters
Noise level κπ ≡ κλ = 0.0177 κw ≡ κρ = 0.0275
Default hazard (monthly) λ̄ = 0.2707 ρ̄ = 0.2317

Productivity processes
Persistence (monthly) ρa = 0.6441 ρz = 0.9700
Standard deviation σa = 0.0703 σz = 0.0574

Adjustment parameters for nonlinear disutility versions:
V1N V2N V3N V4N V5N V6N

κπ = κλ 0.0177 0.00177 0. 000177 0.0177 0.0177 0.000177
κw = κρ 0.0275 0.0275 0.0275 0.00275 0.000275 0.000275
Calibrated utility parameters common to all versions:

Discount rate (monthly): 1− β = 0.0033
Death probability (monthly): 1− βD = 0.0021
Log productivity at birth: z0 = −0.6
Intertemporal elasticity of substitution: γ = 2
Coefficient on utility of money: ν = 1
Coefficient on disutility of labor: χ = 6
Inverse Frisch elasticity: ζ = 1/2
Elasticities of substitution across varieties: ε = εN = 7

by ~hDom and ~hwIWFP , respectively. The histograms are vectors representing the observed frequencies
of price changes lying in #Dom fixed bins, and of wage changes lying in #IFWP fixed bins; thus the
#Dom elements of vector ~hDom sum to one, as do the #IFWP elements of ~hwIWFP . The estimation
routine minimizes the following criterion:

distance =
√

#Dom ||λmodel−λDom||+||~hwmodel−~hDom||+
√

#IWFP ||ρmodel−ρIWFP ||+||~hwmodel−~hwIWFP ||,
(90)

where λmodel, ρmodel, ~hmodel, and ~hwmodel are the adjustment frequencies and adjustment histograms
generated by our model, and || • || represents the Euclidean norm. We scale the component related
to adjustment hazards by the square root of the length of the histograms so that the hazards and the
histograms are similarly weighted in our minimization routine.

The parameters we estimate are the default hazard rates λ̄ and ρ̄; the noise parameters κπ ≡ κλ and
κw ≡ κρ, and the parameters of the productivity processes of firms and workers, ρa, σ2

a, ρz , and σ2
z .

26

The noise parameters and default hazard rates all rise moderately compared with the values assumed in
our earlier linear simulations. Our estimates suggest that workers’ productivity is much more persistent
than we assumed earlier (and it is much more persistent than the productivity of firms); in fact, the
parameter hits the boundary value, 0.97, which we imposed on the estimation routine.27 The estimated

26Since minimizing (90) involves computing the model’s steady-state only, our estimation strategy is computationally feasible
when run in FORTRAN.

27We are obliged to place an upper bound on the persistence of productivity in order to keep the processes inside the finite
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version is called V1N; we then vary the stickiness of prices and the stickiness of wages, as before,
defining the versions V2N - V6N described in the table. Calibrated utility parameters are as before
(γ = 2, ν = 1, χ = 6), taken originally from Golosov and Lucas (2007), except that the Frisch elasticity
of labor supply is now ζ−1 = 2. The overall discount rate is set to 1 − β = 0.0033, which combines
pure time discounting with the probability of death. The monthly death probability is 1− βD = 0.0021,
implying an expected working life of forty years. The log productivity of newborn workers is set to -0.6;
since the productivity process (89) converges to zero over time, workers expect a 60% productivity gain
over their life cycles.

3.2.2 Steady-state results: convex disutility

Table 4 reports steady-state statistics for this parameterization, comparing versions with different combi-
nations of noise parameters (V1N-V6N) as we did previously in Table 2. As in the linear case, decreased
noise in price setting or wage setting makes adjustment more frequent. Crucially, the rise in the frequency
of monthly wage adjustment is now very large, from 8.34% in version V1N to 30.8% in version V6N,
while in the linear case this frequency only rose by one percentage point between versions V1 and V6.
Relatedly, lower noise implies smaller absolute price and wage changes, a lower standard deviation and
kurtosis of price and wage changes, and more of the smallest changes (less than 5% or less than 2.5%).
Price adjustment and especially wage adjustment are significantly more costly here than they were in the
linear case, both because of the higher estimated noise parameters and because convex labor disutility
means that some adjustments are particularly costly, on the margin.28

Overall, the behavior of price and wage statistics in the nonlinear specification is similar to that in
the linear case. The main difference is visible in the histograms shown in Figure 6. When prices and
wages are sticky, both histograms are smooth and display rather fat tails; price adjustments are mildly
left-skewed while wage adjustments are mildly right-skewed. As prices (wages) become more flexible,
the price (wage) adjustment histogram becomes sharply bimodal. This contrasts with our earlier linear
specification, in which the wage adjustment histogram collapsed to a single sharp peak, reflecting the
absence of incentives to adjust wages in response to idiosyncratic productivity shocks.

Likewise, by comparing Figure 7 with our previous Fig. 3, we see that the policy functions of the
nonlinear case are similar to those from the linear case, except that the worker in the nonlinear version
sometimes desires large idiosyncratic wage changes. The figure shows the logit probabilities governing
price resets and wage resets (left panels) and firms’ and workers’ adjustment hazards (right panels). In
each case the probabilities are shown as functions of the price-cost (resp. wage-productivity) pairs. As in
Fig. 3, firms prefer higher prices when costs are higher, and the probability of adjustment rises smoothly
as firms deviate from the prices they prefer (conditional on costs). In contrast with Fig. 3, we now see that
workers also set substantially higher wages as their productivity rises. The preferred wage now varies by
roughly ±30% as worker productivity varies between its maximum and minimum values in the Tauchen
(1986) grid approximation, which differ by ±45%.

By estimating parameters for the nonlinear case, we have also improved the model’s fit to the wage
data in the baseline parameterization V1N. In Fig. 2, the wage adjustment histogram was smooth and
almost symmetric, but now in Fig. 6, the histogram of wage adjustments has a more complex shape,
with heavy tails. Likewise, the IWFP histogram (blue shaded area) has a lot of weight in the tails. Most
of the mass is concentrated on small positive wage adjustments, but there is a fat right tail and a long,

grid on which we perform the simulations.
28In particular, a high productivity worker with an excessively low wage will have a high marginal disutility of time, making

it costly to set a new wage precisely.
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Figure 6: Distribution of nonzero price and wage changes: varying stickiness (ζ = 0.5).

Notes: Black lines: model versions with nonlinear labor disutility (ζ = 0.5). Blue shaded areas: Data.

Left column: Effect of decreasing price stickiness (versions V1N, V2N, V3N) on distribution of nonzero price adjustments.

Right column: Effect of decreasing wage stickiness (versions V1N, V4N, V5N) on distribution of nonzero wage adjustments.
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Table 4: Evaluating the nonlinear LPW model with different values of κπ, κλ, κw and κρ

Data Sticky Decreasing price stickiness Decreasing wage stickiness Flexible
V1N (κ0) V2N (κ0/10) V3N (κ0/100) V4N (κ0/10) V5N (κ0/100) V6N (κ0/100)

Consumption 0.5012 0.5035 0.5043 0.5049 0.5058 0.5090
Labor 0.5078 0.5039 0.5026 0.5115 0.5125 0.5073
Wage 0.8544 0.8590 0.8609 0.8544 0.8544 0.8609

Prices Wages Prices Wages Prices Wages Prices Wages Prices Wages Prices Wages Prices Wages
Freq. of change, %/mo. 10.2 8.33 10.2 8.34 24.8 8.33 59.51 8.33 10.2 13.4 10.2 30.8 59.7 30.7

Mean change, % 1.60 5.10 1.67 3.00 0.69 3.01 0.29 3.01 1.67 1.86 1.67 0.81 0.29 0.81
Mean abs(change), % 9.90 6.47 6.94 5.50 6.06 5.50 4.53 5.50 6.92 3.17 6.92 1.95 4.52 1.96
Std. of changes, % 13.2 6.52 8.96 6.74 6.70 6.73 5.03 6.72 8.94 2.99 8.93 1.95 5.03 1.95
Skewness of changes -0.42 0.35 -0.12 0.43 -0.15 0.17 -0.06 0.17 -0.12 -0.56 -0.12 -0.46 -0.06 -0.46
Kurtosis of changes 4.81 4.39 4.60 11.9 1.85 11.8 2.01 11.7 4.60 2.56 4.60 2.00 2.01 2.00
Percent increases 65.1 86.5 56.5 70.6 53.9 70.6 52.4 70.6 56.5 73.2 56.5 66.8 52.4 66.8
Changes ≤5% 35.5 43.0 45.0 60.8 36.4 60.8 65.2 60.8 45.0 93.4 45.0 99.9 65.3 99.9
Changes ≤2.5% 12.0 11.8 27.3 25.2 13.8 25.2 25.7 25.2 27.3 33.2 27.3 80.2 25.8 80.0

Std. of prices, wages, % 3.73 7.86 4.10 7.86 4.57 7.86 3.72 7.90 3.72 7.94 4.57 7.94

Resetting cost, % rev.∗ 0.50 1.09 0.20 1.09 0.07 1.10 0.49 0.27 0.49 0.08 0.07 0.08
Timing cost, % rev.∗ 0.48 0.94 0.10 0.95 0.03 0.95 0.48 0.14 0.48 0.03 0.03 0.03
Loss relative to flex, %† 2.49 2.77 1.39 2.78 1.01 2.79 2.48 0.75 2.48 0.29 1.01 0.29
∗Note: Costs µ, µw, τ , and τw are expressed as percentages of average revenues (for firms) or average labor income (for workers).
†Note: Gain accruing to a single firm or worker not constrained by decision costs (κ = 0), relative to constrained, as % of average revenues (firms) or labor income (workers).
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thin left tail, and there seems to be some “missing mass” of small negative adjustments. This pattern is
usually taken to indicate downward nominal rigidity. It is interesting that our model, in which rigidities
are entirely symmetric, also seems to show some “missing mass” just below zero, although this effect
is weaker than it is in the IWFP data. While downward adjustments are no more costly than upward
adjustments in our model, workers have little incentive to make small negative adjustments because they
expect their productivity to grow as they age, and because nominal prices have an inflationary trend.
Thus, while workers have an incentive to set a higher wage when they become more productive, they can
react to small negative productivity shocks by waiting for price inflation to reduce their real wage.

3.2.3 Dynamic results: convex disutility

We now return to the issue of monetary non-neutrality. Figure 8 shows the effects of an autocorrelated
money growth shock with monthly persistence 0.8. The figure compares the responses of price and
wage inflation, consumption, hours and the real wage as price and wage stickiness vary, across models
V1N, V3N, V5N and V6N. As before, the sticky-price, sticky-wage specification implies substantial real
effects: consumption and labor rise 2.5% on impact, with a half-life of seven months. The version with
reduced wage stickiness (V5N) has similar real effects on impact, but much lower persistence, because
it implies a large and persistent increase in real wages that offsets firms’ incentive to demand more labor.
As expected the smallest real impact comes from version V6N, which has very low persistence, as in
the Golosov-Lucas (2007) menu cost model. Again, we find that the real effects of money shocks are
large as long as wages are sticky. Version V3N (sticky wages and flexible prices) has almost the same
consumption response as V1N, and lies substantially above V5N (flexible wages and sticky prices). So
again, the key takeaway is that wage rigidity matters more than price rigidity for the overall degree of
monetary nonneutrality in this model.

Qualitatively similar results are found under a Calvo specification. Note that our state-dependent
model generates substantially different adjustment hazards across model versions, with the wage adjust-
ment hazard rising above 30% in versions V5N and V6N. Figure 9 shows impulse responses under Calvo
specifications in which we change the adjustment hazards to reflect the hazards obtained from the state-
dependent model versions shown in Figure 8. Therefore, unlike what we found in our linear disutility
exercise, the real effects now differ substantially across the Calvo specifications. In fact, this makes our
Calvo simulations resemble our state-dependent simulations on many dimensions. The big difference
between the state-dependent simulations and the Calvo simulations is that the latter have substantially
greater persistence: the half-life of the consumption response is more than twice as long in the V1CN
simulation as it is in the estimated state-dependent case V1N.

3.2.4 Nonlinearities in inflation dynamics

Next, we discuss several aspects of our state-dependent model’s dynamics that are highly nonlinear.
Figure 10 shows that as money supply shocks become larger, their impact falls proportionally more on
inflation and less on the real economy. The figure compares the impact of one-time, permanent, uncor-
related shocks to the money supply varying from two to sixteen percentage points. A two-percent jump
in the money supply causes a small, persistent rise in inflation, and a persistent increase in consumption,
peaking at 0.8% on impact. The impact effect on consumption increases to 1.4% (1.8%) for a four (six)
percent jump in the money supply; but the persistence of the real effects drops rapidly with the size of
the shock, so the cumulative real change is actually smaller for a six-percent money shock than it is for
a four-percent shock. The reason is that larger shocks give firms and workers ever stronger incentives
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Figure 7: Adjustment behavior. Benchmark model (V1N) with sticky prices and sticky wages (ζ = 0.5).
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Notes: Distribution of adjustments and adjustment probability for prices (top four panels) and wages (bottom four panels) under

nonlinear labor disutility (ζ = 0.5).

Left panels: 3d plots show price (wage) choice probabilities, conditional on cost (productivity).

Left panels: 2d plots show price (wage) choice probabilities, conditional on each possible cost (productivity).

Right panels: 3d plots show adjustment probabilities, conditional on current price (wage) and cost (productivity).

Right panels: 2d plots show adjustment probabilities, conditional on each possible cost (productivity).

Colors in 2d plots: For firms, green represents low cost (high a). For workers, green represents high productivity (high z).
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Figure 8: Money growth shock: effects of nominal rigidity. Error-prone pricing, ζ = 0.5.
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Notes:

Impulse responses of inflation and consumption to money growth shock with autocorrelation 0.8 (monthly), under nonlinear

labor disutility (ζ = 0.5).

Black: Benchmark (V1N), both prices and wages sticky. Red: V3N, flexible prices and sticky wages.

Blue: V5N, sticky prices and flexible wages. Green: V6N: both prices and wages flexible.

to adjust prices and wages immediately (a stronger selection effect). Thus, most of the nominal reac-
tion occurs immediately, making the real effects smaller. Indeed, for money supply shocks larger than
8%, the real stimulus on impact shrinks, and the brief initial rise is followed by a prolonged slump in
consumption and labor due to inflationary distortions.

Finally, in the context of the current prolonged episode of low inflation, it is interesting to ask how our
model’s behavior changes with trend inflation. Figure 11 and Table 5 document some of the differences
across annual trend inflation rates from -1% to 10%. The figure compares the impulse responses of
our estimated benchmark model V1N to a 1% money supply shock (with monthly autocorrelation 0.8,
as before) as trend inflation varies. The largest real effects are obtained when trend inflation is zero
(orange); they are slightly smaller at either plus or minus one percent trend inflation (yellow and light blue
respectively). While there is little difference in the contemporaneous impact of money on consumption
across trend inflation rates, higher trend inflation rapidly lowers the persistence of the real effects. The
half-life of the consumption response falls from 10 months at 0% trend inflation to seven months in the
baseline simulation (purple), which features a 2% trend inflation rate, and the half-life of consumption
falls to four months at a ten percent trend inflation rate. On the other hand, these moderate changes in
trend inflation have a big impact on the response of inflation to a monetary shock: inflation rises more
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Figure 9: Money growth shock: effects of nominal rigidity. Calvo pricing, ζ = 0.5.

5 10 15 20

Months

0

0.2

0.4

0.6

0.8

1
M

on
ey

 g
ro

w
th

V1
V3
V5
V6

5 10 15 20

Months

0

0.2

0.4

0.6

0.8

P
ric

e 
in

fla
tio

n

5 10 15 20

Months

0

0.5

1

1.5

2

2.5

C
on

su
m

pt
io

n
5 10 15 20

Months

0

0.5

1

1.5

2

2.5

La
bo

r

5 10 15 20

Months

0

0.2

0.4

0.6

0.8

1

W
ag

e 
in

fla
tio

n

5 10 15 20

Months

0

0.5

1

1.5

2

R
ea

l w
ag

e

Notes:

Impulse responses of inflation and consumption to money growth shock with autocorrelation 0.8 (monthly), under Calvo ad-

justment with nonlinear labor disutility (ζ = 0.5).

Black: Benchmark (V1CN), both prices and wages sticky. Red: V3CN, flexible prices and sticky wages.

Blue: V5CN, sticky prices and flexible wages. Green: V6CN: both prices and wages flexible.

than twice as much on impact, starting from 5% trend inflation, as it does after the same shock in the
absence of a nominal trend.

Stated differently, if we define the “Phillips multiplier” as the ratio of the change in inflation to the
change in log employment on impact, then Table 5 shows that this multiplier is more than doubled, from
0.108 to 0.232, as trend inflation rises from 0% to 5%. Alternatively, we could define this multiplier as
the ratio of the area under the inflation impulse response to the area under the log employment impulse
response; this is reported in the table as the “Long-run Phillips multiplier”,29 which rises from 0.147 at
zero trend inflation to 0.394 at 5% annual inflation.

These results suggest that our model may help explain the notably flat Phillips curve that has been
observed in recent years. Indeed, the flattening of the Phillips curve is especially pronounced as trend
inflation falls from 2% to 1% annually. This is particularly interesting because many papers have argued
that downward nominal wage rigidity causes a flattening of the Phillips curve at low inflation (Benigno
and Ricci, 2011; Lindé and Trabandt, 2018). But our framework does not feature any asymmetry between
the costs of upward and downward adjustments of wages or prices. Instead, the flattening of the Phillips

29Barnichon and Meesters (2018) propose directly estimating this multiplier to measure the tradeoff between inflation and
unemployment.
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Figure 10: Comparing small and large money supply shocks. Benchmark model (V1N).

Notes:

Impulse responses to a permanent jump in the money supply of 2% (dark blue), 4% (red), 6% (yellow), 8% (purple), 10%

(green), 12% (light blue), 14% (dark red), and 14% (dark blue).
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Figure 11: Impulse responses at varying trend inflation rates. Benchmark model (V1N).
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Table 5: Evaluating the nonlinear LPW model, benchmark calibration V1N, at different trend inflation rates

-1% 0% 1% 2% 3% 5%
Consumption 0.5017 0.5019 0.5016 0.5012 0.5008 0.5001
Labor 0.5081 0.5081 0.5080 0.5078 0.5076 0.5073
Wage 0.8545 0.8548 0.8546 0.8544 0.8543 0.8540

Prices Wages Prices Wages Prices Wages Prices Wages Prices Wages Prices Wages
Freq. of change, %/mo. 9.04 7.28 7.53 6.95 9.05 7.53 10.2 8.34 11.0 9.11 12.5 10.8

Mean change, % -0.93 -0.05 0.00 1.15 0.92 2.17 1.67 3.00 2.23 3.58 3.25 4.53
Mean abs(change), % 6.50 4.91 6.18 4.93 6.59 5.20 6.94 5.50 7.21 5.76 7.72 6.27
Std. of changes, % 8.65 6.77 8.54 6.82 8.80 6.82 8.96 6.74 9.05 6.67 9.19 6.55
Skewness of changes 0.24 0.82 0.10 0.59 -0.03 0.35 -0.12 0.43 -0.19 0.06 -0.30 -0.11
Kurtosis of changes 4.88 12.1 5.12 12.3 4.80 12.0 4.60 11.9 4.49 12.0 4.36 12.0
Percent increases 37.8 42.7 43.5 53.7 51.4 63.4 56.5 70.6 59.7 75.0 64.8 80.8
Changes ≤5% 49.4 68.2 53.7 69.0 49.1 65.3 45.0 60.8 42.0 57.0 37.3 49.8
Changes ≤2.5% 30.8 29.1 35.7 30.5 30.7 28.0 27.3 25.2 25.1 22.9 21.9 19.1

Std. of prices, wages, % 3.39 7.80 2.93 7.73 3.40 7.79 3.73 7.86 3.96 7.92 4.35 8.04

Resetting cost, % rev.∗ 0.45 1.00 0.38 0.95 0.45 1.00 0.50 1.09 0.53 1.17 0.59 1.33
Timing cost, % rev.∗ 0.50 0.97 0.56 0.99 0.51 0.97 0.48 0.94 0.47 0.91 0.45 0.87
Loss relative to flex, %† 2.44 2.56 2.40 2.52 2.44 2.63 2.49 2.77 2.52 2.89 2.59 3.16

Phillips multiplier, impact? 0.124 0.105 0.126 0.161 0.184 0.233
Phillips multiplier, long run?? 0.172 0.147 0.195 0.254 0.303 0.394

∗Note: Costs µ, µw, τ , and τw are expressed as percentages of average revenues (for firms) or average labor income (for workers).
†Note: Gain accruing to a single firm or worker not constrained by decision costs (κ = 0), relative to constrained, as % of average revenues (firms) or labor income (workers).
†Note: Ratio of change in inflation to change in log employment, on impact of money shock.
†Note: Ratio of cumulative change in inflation to cumulative change in log employment, after money shock.
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curve is a result of state-dependent adjustment. At low inflation, the frequencies of wage and price
adjustments both decrease, falling from 10.8% and 12.5% per month at 5% trend inflation to 6.95% and
7.53% when trend inflation is zero. Likewise, the adjustments get smaller; the mean absolute wage and
price changes are 6.27% and 7.72% at 5% inflation, falling to 4.93% and 6.18% at zero trend inflation.
Since workers and firms are less reactive to shocks at low inflation, the overall price level also becomes
less reactive (causing the real economy to become more reactive). Hence, the Phillips curve becomes
substantially flatter.

4 Conclusions

We have developed a DSGE model with state-dependent price and wage rigidity, combining monopolistic
competition in goods and labor (as in Erceg, Henderson, and Levin, 2000), with nominal rigidity due to
costly decision-making (as in Costain and Nakov, 2018). Our heterogeneous-agents approach, with
idiosyncratic shocks both to firms and to workers, allows us to fit our model to microdata on price and
wage adjustments, but also permits us to calculate the dynamic effects of monetary policy shocks. Our
model assumes that labor can be costlessly reallocated across firms at any time, so our study should be
understood as documenting the interactions of nominal price stickiness with nominal wage stickiness,
abstracting from matching frictions or any other forms of labor specificity.

At a microeconomic level, we compare different calibrations to see how nominal rigidities affect
price and wage adjustment behavior. Assuming linear labor disutility makes the model much easier to
solve, but implies that the wage never varies in response to individual productivity shocks; therefore
our preferred specification has convex disutility of labor. We estimate the convex disutility specification
to match hazard rates and adjustment histograms from price and wage microdata; our estimation is
numerically feasible since it only requires computing the model’s steady state. Our estimates match
the frequency of adjustment from microdata, and produce a histogram somewhat smoother than that
observed in the data. Firms in our estimated model spend less than one percent of revenues on decisions
related to price setting, while workers devote approximately two percent of their time to decisions about
wage setting. Allowing for a trend in idiosyncratic productivity over the life cycle implies that small
negative wage changes are relatively infrequent; this helps explain a pattern which is often interpreted
as evidence of downward nominal wage rigidity, in spite of the fact that there is no inherent downward
rigidity in our framework.

Our model implies a policy-relevant degree of monetary nonneutrality. Money growth shocks have
similar real effects on impact in our state-dependent framework, but only half the persistence, compared
with the time-dependent framework of Calvo (1983). We find that wage stickiness is a stronger source
of monetary nonneutrality than price stickiness; calibrations of our model with wage stickiness only
produce almost as much non-neutrality as calibrations with wage and price stickiness together. This
accords with the consensus from time-dependent models of nominal rigidity (Huang and Liu, 2002;
Christiano et al., 2005); our study is the first to demonstrate this result in a state-dependent model. In
contrast, calibrations of our model with price stickiness only have much reduced real effects of money
shocks, and imply a strong, counterfactual rise in the real wage in response to monetary stimulus.

Monetary policy has a number of highly nonlinear effects in our framework. Larger money shocks
cause adjustment hazards to rise, so inflation responds more quickly and real effects are proportionally
smaller. Indeed, the absolute size of the cumulative real impact is maximized by a rise of roughly 5% in
the money supply; money shocks larger than this have a predominantly negative impact on real variables.
Decreasing the trend inflation rate causes adjustment hazards to fall, both for prices and wages. This
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alters the slope of the Phillips curve, as lower responsiveness of price-setting and wage-setting makes
inflation less responsive to macro shocks too. The real effects of a money shock are largest at zero
trend inflation, and decrease as the inflation trend becomes negative or positive. The effects on the
slope of the Phillips are quantitatively significant: its slope more than doubles as trend inflation rises
from 0% to 5% annually. A flatter Phillips curve at low trend inflation rates has often been explained by
appealing to downward nominal wage rigiditiy, but in our context it is caused by state-dependent changes
in adjustment frequencies, not by any downward asymmetry in the costs of adjustment.
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Appendix. Computation

Outline of algorithm

Computing this model is challenging due to heterogeneity. At any time t, firms face different productivity
shocks Ajt and are stuck at different prices Pjt; likewise productivity and wages vary across workers.
The Calvo model is popular because, up to a first-order approximation, only the average price matters for
equilibrium. But this property does not hold in most models; here we must treat all equilibrium quantities
as functions of the time-varying distribution of prices and productivity across firms.

We address this problem by implementing Reiter’s (2009) solution method for dynamic general equi-
librium models with heterogeneous agents and aggregate shocks. As a first step, the algorithm calculates
the steady-state general equilibrium in the absence of aggregate shocks. Idiosyncratic shocks are still
active, but are assumed to have converged to their ergodic distribution, so the real aggregate state of
the economy is a constant, Ξ. The algorithm solves for a discretized approximation to this steady state,
restricting all idiosyncratic state variables to discrete grids. That is, real log prices pjt lie at all times on
a fixed grid γp ≡ {p1, p2, ...p#p}; real log wages wit lie in γw ≡ {w1, w2, ...w#w}; and likewise for log
productivities of firms and workers: ajt ∈ γa ≡ {a1, a2, ...a#a} and zit ∈ γz ≡ {z1, z2, ...z#z}. The
four grids γp, γw, γa, and γz are all assumed to have constant step sizes (in logs) between grid points.
Moreover, we assume (only for numerical convenience) that the step size in γw equals that in γp, and
also that the number of grid points is the same in these two grids: #w = #p.

We can then view firms’ steady state value function as a matrix V of size #p ×#a, comprising the
values vjk ≡ v(pj , ak,Ξ) associated with prices and productivities

(
pj , ak

)
∈ γp × γa.30 Similarly, the

distribution of firms at the beginning (or end) of any given period can be viewed as a #p × #a matrix
Ψ (or Ψ̃) in which the row j, column k element Ψjk (or Ψ̃jk) represents the fraction of firms in state
(pj , ak) at the beginning (or end) of any given period. Likewise, the workers’ steady-state value function
and the beginning- and end-of-period distributions of workers can be represented by matrices L, Ψw and
Ψ̃w of size #w×#z . While these matrices are large objects, we can nonetheless solve for a steady-state
general equilibrium as a low-dimensional root-finding problem. By guessing the steady-state values of
C and N , we can set up the Bellman equations of the workers and firms, and solve for their fixed points
L and V; given optimal policies, we can describe the dynamics of the distributions, and thus solve for
the steady-state distributions Ψw, Ψ̃w, Ψ, and Ψ̃; knowing the distributions, we will show that we can
construct two scalar equations that suffice to check the values of C and N .

In a second step, Reiter’s method constructs a linear approximation to the dynamics of the discretized
model, by perturbing it around the steady state general equilibrium on a point-by-point basis. That
is, the firms’ value function is represented by a #p × #a matrix Vt with row j, column k element
vjkt ≡ v(pj , ak,Ξt), thus summarizing the time t values at all grid points (pj , ak) ∈ γp × γa. Then,
instead of viewing the Bellman equation as a functional equation that defines v(p, a,Ξ) for all possible
idiosyncratic and aggregate states p, a, and Ξ, we think of it as an expectational relation between the
matrices Vt and Vt+1. This amounts to a (large!) system of #p#a first-order expectational difference
equations that determine the dynamics of the #p#a variables vjkt . In addition, there will be a relation
between the workers’ values Lt and Lt+1 at times t and t+1, which can also be seen as a system of #w#z

scalar equations in #w#z unknowns. Finally, the distribution of firms at time t+1, Ψt+1 is derived from
the distribution at time t, Ψt, which amounts to #p#a scalar equations; and the distributional dynamics
of workers links the distributions Ψw

t and Ψw
t+1 with a matrix equation that is equivalent to a system

30In this appendix, bold face indicates matrices, and (most) superscripts represent indices of matrices or grids.
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of #w#z scalar equations.31

We linearize these equations numerically (together with a handful of scalar equations, including first-
order conditions for some aggregate variables). We then solve for the saddle-path stable solution of the
linearized model using the QZ decomposition, following Klein (2000). It is crucial to note here that
our problem is tractable because we have separated the two sticky decisions in our model between two
different classes of decision-makers. In a model where a single decision-maker adjusted p and w in
response to the shocks a and z, the value function and distributional dynamics would both have to be
evaluated over #p#w#a#z grid points. Solving for dynamic general equilibrium would require solving
a system of slightly more than 2#p#w#a#z equations. Instead, since we have assumed prices and
wages are set by different agents, we will have to solve slightly more than 2#p#a + 2#w#z equations,
which is a vastly smaller problem.32

The discretized model

Firms’ values are summarized by matrices Vt and Ve
t , of size #p×#a, and the vector ṽt, of length #a.

Workers’ values are described by the matrices, Lt, Let , and L̃t, of size #w×#z . The elements of Vt are
vjkt ≡ v(pj , ak,Ξt), and the elements of Ve

t are ve,jkt ≡ ve(pj , ak,Ξt), for
(
pj , ak

)
∈ γp×γa. Likewise,

Lt has elements ljkt ≡ l(wj , zk,Ξt), and Let has elements le,jkt ≡ le(wj , zk,Ξt), for
(
wj , zk

)
∈ γw×γz .

The expected values of setting a new price or wage are given by vectors ṽt and L̃t, with elements
ṽkt ≡ ṽ(ak,Ξt) and l̃jkt ≡ l̃(wj , ak,Ξt).

Related matrices include the probability matrices of firms and workers, Λt and Rt. The (j, k) ele-
ments of these matrices are given by33

λjkt ≡ λ

(
ṽkt − v

jk
t

κλwt

)
, ρjkt ≡ ρ

(
l̃kt − l

jk
t

κρξ
jk
t

)
. (91)

Finally, we also define the logit probabilities Πt (a matrix) and Πw
t (a 3d array). The elements of these

matrices are

πjkt = πt(p
j |ak) ≡

ηj exp
(
vjkt /(κπwt)

)
∑#p

n=1 η
n exp

(
vnkt /(κπwt)

) , (92)

πw,jknt = πwt (wn|wj , zk) ≡
ηw,n exp

(
lnkt /(κwξ

jk
t )
)

∑#w
m=1 η

w,m exp
(
lmkt /(κwξ

jk
t )
) . (93)

31Here we are assuming that we can substitute out the steps that define the end-of-period distributions Ψ̃t and Ψ̃w
t . If not,

our system will contain an additional 2#w#z equations.
32In other words, computational complexity under our approach scales exponentially with the number of sticky decisions if

these decisions are all taken by the same agent, but scales linearly in the number of sticky decisions if different decisions are
controlled by different agents. (Actually, the same principle is true in models of fully flexible decisions, but the issue is more
relevant here because stickiness creates heterogeneity— while prices and wages are jump variables in flexible models, in the
presence of nominal rigidity they become state variables.)

33Actually, (91) is a simplified description of λjkt . While (91) implies that λjkt represents the function λ(•) evaluated at the
log price grid point pj and log productivity grid point ak, in our computations λjkt actually represents the average of λ(•) over

all log prices in the interval
(
pj−1+pj

2
, p
j+pj+1

2

)
, given log productivity ak. Calculating this average requires interpolating

the function dt(p, ak) between price grid points. Defining λjkt this way ensures differentiability with respect to changes in the
aggregate state Ξt.
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Here πjkt is the probability that a firm which has decided to adjust its price at time t chooses real log
price pj , conditional on log productivity ak; πw,jknt is a worker’s corresponding probability of choosing
the real log wage wn, conditional on current log real wage wj and log productivity zk. The default
probabilities for log real prices p ∈ γp are η ≡ (η1, . . . , η#p

) ≡ (η(p1), . . . , η(p#p
)), and ηw ≡

(ηw,1, . . . , ηw,#
w

) ≡ (ηw(w1), . . . , ηw(w,#
w

)) is the analogous vector for log real wages w ∈ γw.
In this discrete representation, the productivity processes (62) and (73) can be summarized by ma-

trices S and Sz of size #a × #a and #z × #z . The (m, k) elements of these matrices represent the
following transition probabilities, respectively:

Smk = prob(ajt = am|aj,t−1 = ak), Sz,mk = prob(zit = zm|zi,t−1 = zk). (94)

It is helpful to introduce analogous Markovian notation to describe the deflation of real prices and
wages as the aggregate price level rises. Let Tt be a #p × #p Markov matrix in which the row m,
column l element represents the probability that firm j’s beginning-of-period log real price p̃jt equals
pm ∈ γp if its log real price at the end of the previous period was pl ∈ γp:

Tmlt ≡ prob(p̃jt = pm|pj,t−1 = pl). (95)

Generically, the deflated log price p̃jt ≡ pj,t−1 − it ≡ pj,t−1 − i(Ξt,Ξt−1) will fall between two grid
points; then the matrix Tt must round up or down stochastically. Also, if pj,t−1 − it lies below the
smallest or above the largest element of the grid, then Tt must round up or down to keep prices on the
grid.34 Therefore we construct Tt according to

Tmlt = prob(p̃jt = pm|pj,t−1 = pl, it) =



1 if pl − it ≤ p1 = pm

pl−it−pm−1

pm−pm−1 if p1 < pm = min{p ∈ Γp : p ≥ pl − it}
pm+1−pl+it
pm+1−pm if p1 ≤ pm = max{p ∈ Γp : p < pl − it}

1 if pl − it > p#p
= pm

0 otherwise
(96)

Furthermore, recall that we have assumed that the price and wage grids γp and γw have the same step
size, and the same number of grid points. Note that in this case, the transition probabilities mapping real
log wages from one period to the beginning of the next are the same as those for real log prices. In other
words, for all m and l,

prob(w̃it = wm|wj,t−1 = wl) = prob(p̃jt = pm|pj,t−1 = pl) = Tmlt . (97)

Thus we can describe the distributional dynamics of wages using exactly the same matrix Tt that we
used from prices.

Given this notation, we can now write the distributional dynamics in a more compact form. The time
t distributions of firms and workers are derived from the distributions at the end of t− 1 as follows:

Ψt = TtΨ̃t−1S
′, Ψw

t = βDTtΨ̃
w
t−1(Sz)′ + (1− βD)Ψ0

t . (98)

34In other words, we assume that any nominal price that would have a real log value less than p1 after inflation is automatically
adjusted upwards to the real log value p1 (and when computing examples with deflation we must adjust down any real log price
exceeding p#

p

). This assumption is made for numerical purposes only, and has a negligible impact on the equilibrium as long
as we choose a sufficiently wide grid γp.
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Note that exogenous shocks are represented from left to right in the matrices Ψ̃t and Ψ̃w
t , so that their

transitions can be treated by right multiplication, while sticky decision variables are represented verti-
cally, so that transitions related to choice variables can be described by left multiplication. The workers’
dynamics reflect the fact that a worker dies at the end of any period with probability 1 − βD, being
replaced by a newborn worker, whose wage and productivity are governed by the distribution Ψ0

t . Next,
to calculate the effects of price adjustment on the distribution, let 1pp, 1pa, 1ww, and 1wz be matrices of
ones of size #p×#p, #p×#a, #w ×#w, and #w ×#z , respectively. After production occurs at time
t, as new real prices are set, the price distribution adjusts as follows:

Ψ̃t = (1pa−Λt)�Ψt + Πt � (1pp(Λt �Ψt)). (99)

where the operator� represents element-by-element multiplication (the Hadamard product). The matrix
notation does not carry over to the wage dynamics, because the distribution of new wages varies with the
current wage, so instead we state the dynamics one row at a time:

Ψ̃w,j
t = (1z−Λw,j

t )�Ψw,j
t + 1′w(Πw,j

t �Λw
t �Ψw

t ). (100)

Here Ψ̃w,j
t , Ψw,j

t , and Λw,j
t are the jth rows of Ψ̃w

t , Ψw
t , and Λw

t , respectively, while Πw,j
t is the matrix

representing the probability of choosing wagewj conditional on each possible state: prob(wj |wi, zk,Ξt).
1z and 1w are conformable row vectors of ones.

The same transition matrices Tt, S, and Sz show up when we write the Bellman equations in matrix
form. The discounted values of choosing each possible real price p̃ are

Ve
t = βEt

{
C−γt+1

C−γt
T′t+1Vt+1S

}
, Let = βEt

{
C−γt+1

C−γt
T′t+1Lt+1S

z

}
. (101)

Here the expectation Et refers only to the effects of the time t + 1 aggregate shock gt+1, because the
dynamics of the idiosyncratic states (pjt, ajt) and (wit, zit) are completely described by the matrices
T′t+1, S, and Sz.

Now, let Ut be the #p ×#a matrix of current payoffs to the firm, with elements

ujkt ≡
(

exp(pj)− wt
exp(ak)

)
Ct

exp(εpj)
(102)

for
(
pj , ak

)
∈ γp × γa. The define the current payoffs of the workers, let Ht be the #w × #z matrix

containing the elements hjkt ≡ ht(w
j , zk), representing labor demand in state (wj , zk,Ξt). Also define

W as a conformable matrix with all the elements of row j equal to expwj , and Xt as a matrix containing

the elements X(hjkt +τ jkt +µjkt )
u′(c(Ξt))

representing total disutility of time use in state (wj , zk,Ξt). Then we can
calculate the value functions as

Vt = Ut + Λt � (EπVe
t −Kπ

t ) + (1pp −Λt)�Ve
t −Kλ

t (103)

Lt = W �Ht −Xt + Rt � EπLe
t + (1ww −Rt)� Le

t (104)

In order to check labor market clearing it will be helpful to define several summary statistics related
to labor time use. First, letKλ

t andKπ
t and be total time use for choosing the timing of the price decision,
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and actually choosing prices:

Kλ
t =

#p∑
j=1

#a∑
k=1

ψjkt

(
λjkt ln

(
λjkt
λ̄

)
+ (1− λjkt ) ln

(
1− λjkt
1− λ̄

))
, (105)

Kπ
t =

#p∑
j=1

#a∑
k=1

ψjkt λ
jk
t

(
#p∑
i=1

πikt ln

(
πikt
ηk

))
, (106)

∆t =

#p∑
j=1

#a∑
k=1

ψjkt exp(−εpj − ak). (107)

Note that in the second equation, the time Kπ
t devoted to choosing prices is weighted by the fraction

adjusting, λjkt . In the third equation, ∆t represents a price dispersion measure that relates time devoted
to production to total goods produced.

Next, we discuss how we apply the two steps of Reiter’s (2009) method to this discrete model.

Step 1: steady state

In the aggregate steady state, aggregate shocks are zero; the distribution of firms takes some unchanging
value Ψ, and the distribution of workers takes some unchanging value Ψw. Thus the aggregate state of
the economy is constant: Ξt ≡ (gt,Ψt−1,Ψ

w
t−1) = (0,Ψ,Ψw) ≡ Ξ. We indicate the steady state of

all equilibrium objects by dropping the time subscripts and the function argument Ξ, so the steady state
value function V has elements vjk ≡ v(pj , ak,Ξ).

Long run monetary neutrality in steady state implies that the rate of nominal money growth equals
the rate of inflation:

µ = exp(i).

Thus, the steady-state transition matrix T is known, since it depends only on steady state inflation i.
Morever, the Euler equation reduces to

exp(i) = βR,

which simply serves to determine the nominal interest rate R.
We can then calculate general equilibrium as a three-dimensional root-finding problem, by guessing

consumptionC, labor demandN , and the aggregate wage levelw. On one hand, knowing c(Ξ) andw(Ξ)
we can construct the firm’s profit function u(p, a,Ξ) = (ep − w(Ξ)e−a)c(Ξ)e−εp. Knowing the profit
function, we can solve the firm’s problem by backwards induction, which yields the value functions
v, ve, and ṽ, and the policy functions λ and π. Given the firm’s policy functions, we can calculate
the distributional dynamics to find the steady-state distribution of prices and productivities, Ψ(p, a).
From the firm’s problem and the steady-state distribution we can also calculate the time firms devote to
decision-making (Kλ

t and Kπ
t ), and the efficiency wedge ∆.

On the other hand, knowing n(Ξ) andw(Ξ) we can construct the labor demand function h(w, z,Ξ) =
ez(εn−1)n(Ξ)w(Ξ)εne−εnw, and given c(Ξ) we can also calculate worker’s utility value of labor income,
u′(c(Ξ))ewh(w, z,Ξ). We can then solve the worker’s Bellman equation by backwards induction. This
yields the vaue functions l, le, and l̃, and the policy functions ρ, and πw, as well as the time use function
τ and µ, and the worker’s marginal value of time ξ. Given the worker’s policy functions, we can calculate
the distributional dynamics to find the steady-state distribution of wages and productivities, Ψw(w, z).
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With these distributions in hand, we can then check whether the guessed values of C, N , and w are
consistent with an equilibrium. Then we check the following three scalar equations:

1 =

#p∑
j=1

#a∑
k=1

ψjk exp
(
(1− ε)pj

)
, (108)

w =


#p∑
j=1

#a∑
k=1

ψw,jk exp
(

(1− εn)(wj − zk)
)

1
1−εn

. (109)

N = ∆C + κπK
π + κλK

λ. (110)

The first two equations are the aggregate price and wage identities; the last is the labor market clearing
condition. If these three equations are satisfied with sufficient accuracy, then a steady-state general
equilibrium has been found.

Step 2: linearized dynamics

We now conjecture that nominal and real state variables take the form Ωt ≡ (Mt, gt,Φt,Φ
w
t ) and

Ξt ≡ (gt,Φt,Φ
w
t ), respectively. We will show that this is a valid state variable for the economy by

constructing an equilibrium in terms of this state.
Given the steady state, the general equilibrium dynamics can be calculated by linearization. To

reduce the size of the Jacobian, we will eliminate many variables from the equation system. Thus, we
calculate the end-of-period distributions as an intermediate step, without explicitly counting them in the
equation system:

Ψ̃t = (1pa −Λt) �Ψt + Πt � (1pp(Λt �Ψt)) (111)

Ψ̃w,j
t = (1z−Λw,j

t )�Ψw,j
t + 1′w(Πw,j

t �Λw
t �Ψw

t ) (112)

Having thus calculated Ψ̃t and Ψ̃w
t , the following two equations can be counted as determining the

dynamics of the distributions Ψ and Ψw from periods t to t+ 1:

Ψt+1 = Tt+1Ψ̃tS
′, (113)

Ψw
t+1 = βDTt+1Ψ̃

w
t (Sz)′ + (1− βD)Ψ0

t+1. (114)

Similarly, we do not count the expected values V e and Le explicitly in our equation system, but we
evaluate them in an intermediate step as follows:

Ve
t = βEt

{
C−γt+1

C−γt
T′t+1Vt+1S

}
(115)

Let = βEt

{
C−γt+1

C−γt
T′t+1Lt+1S

z

}
(116)

Given the expected values V e
t and Let , which can be used to calculate the probabilities Λt, Πt, and so

forth, we then count the following two Bellman equations, which determine the dynamics of the value
functions Vt and Lt:

Vt = Ut + Λt � (EπVe
t −Kπ

t ) + (1−Λt)�Ve
t −Kλ

t (117)
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Lt = W �Ht −Xt + Rt � EπLe
t + (1−Rt)� Le

t (118)

We also include the following six scalar equations in our system:

1 =

#p∑
j=1

#a∑
k=1

Ψjk
t exp((1− ε)pj) (119)

w1−εn
t =

#p∑
j=1

#a∑
k=1

Ψw,jk
t exp((1− εn)(wj − zk)) (120)

Nt = ∆tCt + κπK
π
t + κλK

λ
t (121)

µ exp(gt)

exp it
=

mt

mt−1
(122)

1− ν

mtC
−γ
t

= βEt

(
C−γt+1

it+1C
−γ
t

)
(123)

gt+1 = φggt + εgt+1 (124)

If we now collapse all the endogenous variables into a single vector

−→
X t ≡

(
vec (Ψt)

′ , vec (Ψw
t)
′ , mt−1, wt, it, vec (Vt)

′ , vec (Lt)
′ , Ct, Nt

)′
then the four matrix equations (113), (114), (117), and (118), together with the six scalar equations
(119)-(124), amount to first-order system of the following form:

EtF
(−→
X t+1,

−→
X t, gt+1, gt

)
= 0 (125)

where Et is an expectation conditional on gt and all previous shocks.
Since the number of equations matches the number of variables included in the system F , we can

linearize the system numerically with respect to all its arguments to construct the Jacobian matrices
A ≡ D−→

X t+1
F , B ≡ D−→

X t
F , C ≡ Dgt+1F , and D ≡ DgtF . Thus we obtain the following first-order

expectational difference equation system:

EtA∆
−→
X t+1 + B∆

−→
X t + EtCgt+1 +Dgt = 0 (126)

where ∆ represents a deviation from steady state. This system has the form considered by Klein (2000),
so we solve our model using his QZ decomposition method. When applying this method, note that Ψt,
Ψw

t, mt−1, wt, and it are all predetermined at t, while Vt, Lt, Ct, and Nt are jump variables.
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