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Abstract

This paper studies price-setting decisions under Rational Inattention. Prices are set by

tracking an unobserved target whose distribution is also unknown. The distribution of the

target can change over time, depending on persistent and unanticipated volatility shocks

that hits the economy. Information acquisition is dynamic and fully flexible since, given

information acquired in the past, owners choose the amount of information to collect as

well as how they want to learn about both the outcome and its distribution. I show that

allowing for imperfect information as the unique source of rigidity, the model is able to

simultaneously reconcile several stylized facts from the microeconomic evidence on price-

setting, both at the cross-sectional and time series levels. The model is consistent with

countercyclical price dispersion and with the presence of a positive correlation between

dispersion and frequency of price changes, two features supported by the data. Dynamic

imperfect information endogenously generates persistence in beliefs, which is crucial to

replicate the dynamic empirical behavior of prices, without further assumptions about

price-rigidities.
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1 Introduction

Firms constantly and actively collect information to guide their decisions. Before setting prices,

owners must first acquire information about unpredictable components of their industries, such

as: elasticities or the state of the economy, which are hardly fully observed. In reality, this task

is presumably harder as the features that generated these shocks may also be unknown. This is

relevant since the distribution of shocks is likely to change over time, reflecting unanticipated

periods of lower or higher uncertainty, such as recessions. Within this natural framework, the

implications of imperfect information about shocks and their distributions on firms decisions,

are certainly not clear. I show in this paper that this channel is quantitatively relevant as it

is able to simultaneously reconcile several stylized facts from the micro price-setting literature,

both at the cross-sectional and time-series level.

I propose a model of endogenous attention with costly entropy reduction, to study how firms

set prices when the distribution of shocks is time-varying. The model follows the literature on

“Rational-Inattention” (henceforth, RI) Sims (2003), where I allow for a dynamic and fully-

flexible information scheme. While past acquired information is relevant, I do not impose

further assumptions on the amount of information to acquire or how owners choose to acquire

it, i.e. there are no parametric assumptions on the distribution of signals. To set prices

optimally, firms constantly collect information to update their beliefs about the realization of

an aggregate fundamental along with the distribution that generated it. As the predictability of

the outcome depends on the persistent volatility shocks that affects the economy, the incentives

to acquire information change as a function of owners beliefs about the current distribution,

making the learning problem dynamic.

After calibrating the main parameters of the model, I show how dynamic imperfect in-

formation is consistent with countercyclical price dispersion along with generating a positive

comovement between price-change dispersion and the frequency of price changes. The simul-

taneous presence of these two features is consistent with the data, as documented by Vavra

(2013) using microeconomic evidence from price-setting.1 In addition, my model is also consis-

tent with the simultaneous presence of small and large prices changes at the cross-section level,

as stressed by Klenow and Kryvtsov (2008). Finally as owners are active learners in the model,

its implications are also in line with the presence of counter-cyclical attention, as documented

by Coibion and Gorodnichenko (2015).

By combining price-rigidities with time-varying idiosyncratic shocks, Vavra (2013) shows

how the aforementioned set of stylized facts is consistent with models of state-dependent pric-

ing. I argue that even if we abstract from any of these two assumptions, and if we study

1Throughout the paper I will constantly make the distinction between “dispersion” and “volatility”. In this
context, dispersion refers to the spread (typically measured as the inter-quantile range or the standard deviation)
of endogenous variables with respect to the cross-section of firms. On the other hand, volatility refers to the
spread of exogenous shocks.
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instead price-setting decisions under imperfect information it is still possible to rationalize the

same behavior. Besides the theoretical exercise, there are important reasons why it is relevant to

provide an information-based explanation that departs from price-rigidities. Microeconomic ev-

idence suggests that managerial costs related to information processing represent a significantly

larger proportion of total expenditures, relative to cost associated with price-changes, Zbaracki,

Ritson, Levy, Dutta and Bergen (2004). In addition, my model illustrates a possible channel

through which imperfect information can affect price stability, whilst being consistent with the

data. Replacing a price-rigidity with an imperfect information mechanism is not innocuous for

policy counterfactuals. Paciello and Wiederholt (2013) highlights the different implications for

optimal policy within a price-setting framework, after allowing for active learning under RI.

While in the paper I do not provide an optimal policy argument, the results certainly lead the

discussion towards this direction.

Solving a model where information acquisition is dynamic and fully-flexible within a non-

stationary framework, impose several methodological challenges. The difficulties arise precisely

because of its flexible structure. In the model, acquired information has an effect on both

pricing decisions and posterior beliefs about next’s period distribution. To allow for a dynamic

setting, a common assumption in the RI literature is to allow for a Gaussian distribution for

the shock process, which is known with certainty. This assumption combined with a quadratic

loss function, leads to a close form for the optimal signal structure, given by the true outcome

realization plus normally distributed noise, Woodford (2003) and Maćkowiak, Matějka and

Wiederholt (2018a). Uncertainty about the distribution of shocks, leads the optimal structure

of signals to depend on the relative likelihood assigned to the economy being in each unobserved

state. This impose a challenge when it comes to characterize the effects of current information

on posterior beliefs. I tackle this problem by relying on the solution proposed by Steiner,

Stewart and Matějka (2017). My model builds on this result, by allowing for different values

of information costs and for state-dependent distributions. Then, I provide an algorithm to

numerically solve this dynamic model with flexible information.

The model is simulated and calibrated to replicate documented properties of individual

price changes in microeconomic datasets. To the best of my knowledge, the extend to which

a fully-flexible dynamic RI model is able to match the data, has not been addressed by the

literature before. This result strengthen the importance of incorporating limited information

related constraints to understand economic outcomes and agent’s behavior, as discussed by

Mackowiak, Matejka and Wiederholt (2018b) and Gabaix (2017).

Since the model aims to reconcile the dynamic features of price dispersion, in the simula-

tions the high volatility state is interpreted as a proxy for economic recessions in the data.2 To

match moments, I assume a parametric distribution for information costs. While the estima-

2This feature is in line with papers discussing how recessions are moments of a significant increase in uncer-
tainty, which is captured by a rise in the volatility of both aggregate and idiosyncratic shocks, Bloom (2009)
and Jurado, Ludvigson and Ng (2015).
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tion depends on this assumption, I show that the magnitude of cost dispersion across firms is

meaningful as it represents almost half of the average cost. Being the cost of information one

of the key parameters in the RI literature, the results are informative as they shed light on

how dispersed this rigidity can be. The ability of the model to match the large proportion of

small price changes at the cross-section level, is an implication of having active learners with

dispersed information costs.3

Imperfect information about a persistent distribution endogenously generates persistence in

owners beliefs. Based on simulated data, I quantify the degree of beliefs persistence. I show that

when the economy enters into a high volatility state, a firm with the lowest cost of information

(with respect to all possible discretized values) needs 5 months to recognize the change, while

a firm facing the highest costs need 9 periods. I quantify the role of beliefs persistence in price-

change dispersion by decomposing its variance. I argue that at the onset of a state change, the

proportion of the dispersion explained by owner’s different beliefs about the shock distribution

increase by 25%.

The ability of the model to replicate the aforementioned positive correlation between disper-

sion and frequency of price changes crucially depends on the concurrent presence of a dynamic

flexible information framework with time-invariant heterogeneous costs. The model then nests

two previously studied settings in the RI literature. With full-information about the shock

distribution, the model becomes static with a Gaussian unobserved target-price. This set-

ting resembles the one presented by Woodford (2003) and Maćkowiak and Wiederholt (2009).

Whilst, a dynamic model with homogeneous information costs has also been studied by Matějka

(2015). After re-calibrating the parameters under these two alternative specifications, I show

how each assumption on its own is not enough to replicate the dynamic relationships suggested

by data.

The baseline model presents some shortcomings. Firstly, it cannot fully replicate the price-

stickiness observed in the data, where individual prices stays constant for some time. Although

prices does not change regularly in the model, its simulated duration is shorter relative to the

data.4 Embedding price-rigidities within the described dynamic learning structure, emerges as

a natural extension of this paper. The combination of menu-costs with heterogeneous persistent

beliefs would presumably amplify the documented effects on price-dispersion as the economy

moves across different volatility states. Secondly, while all firms track the same target-price,

they cannot infer what others are doing i.e. there is no strategic complementarity in the model.

3In the literature of price-rigidities, matching this feature is not trivial. A common assumption within these
models is to allow for stochastic menu-costs, Dotsey, King and Wolman (1999). As discussed in section 2.3, the
source of the rigidity in my learning model is modeled as a fixed-effect across firms.

4The impossibility of matching this feature was not obvious ex-ante. As argued by Matějka (2015) and Jung,
Kim, Matejka, Sims et al. (2015), a Rationally Inattentive agent chooses to price discretely when the processes
for the fundamentals are not fully Gaussian. This would resembles price-stickiness without assuming further
price-adjustment costs. I conjecture that the simulated price-stickiness is not enough to match the data, as the
model still relies on a quadratic loss function independently that the shock is distributed according to a mixture
of normals.
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As discussed by Hellwig and Veldkamp (2009) and Yang (2015), complementarity in actions

brings incentives to know what others know. As signal’s precision are a non-parametric function

of idiosyncratic costs and persistent beliefs, the task of inferring the time-varying posterior

beliefs of others and from this, their distinct pricing decisions is clearly not trivial.

The paper contributes to the price-setting literature with information frictions. Alvarez,

Lippi and Paciello (2011) solves a price-setting problem with observation and menu costs. The

paper shows how these two costs complements each other, delivering different implications for

the timing of price reviews. Gorodnichenko (2008) solves a model with information frictions

and menu costs. Moscarini (2004) introduces a pricing problem with limited information, where

agents are restricted to receive fresh information only at irregular moments of time, creating

inertia in their behavior. Woodford (2009) introduces a setting with menu-costs, where the

decision to conduct a price review is made under RI. In all these papers the results are driven by

the crucial role of price-rigidities, while in this paper all the implications are a pure consequence

of information rigidities. In addition, this literature has not look at the dynamic behavior of

price-setting while trying to match the stylized facts, while in this paper these two tasks are

performed simultaneously. In a recent paper, Baley and Blanco (2018) studies dynamic pricing

with menu-costs and information rigidities. In their set-up, the timing of volatility shocks is

known with certainty, which is precisely the main assumption this paper aims to relax.

RI models have proven useful to rationalize the empirical behavior of prices along with its

aggregate implications. Maćkowiak and Wiederholt (2009) proposes a pricing model with en-

dogenous attention from firms to explain the sluggish response of prices to aggregate shocks.

Matějka (2015) alternatively introduce a model that does not rely on quadratic objectives nor

Gaussian distributions, as in Maćkowiak and Wiederholt (2009), which endogenously generates

price discreteness. Afrouzi (2018) solves a dynamic general equilibrium model with inattentive

price-setters, Gaussian signals and strategic complementarities between them. Finally, Paciello

and Wiederholt (2013) shows how under costly information, monetary policy can reduce in-

efficient price dispersion by affecting the response of profit-maximizing prices to unobserved

markup shocks. This paper contributes to this literature by studying the unexplored conse-

quences of volatility shocks on price dispersion, whilst calibrating a fully dynamic imperfect

information model able to match empirical facts from the data.

The rest of the paper is structured as follows. In Section 2, I introduce the model set-up

and discuss the dynamic costly information setting. I then fully derive and characterize the

solution of the problem. Section 3 presents the algorithm to numerically solve the model and

then I show how the model is able to replicate both cross-sectional and time-series moments

from data. The main results of the paper are presented in Section 4, where I lay out both

individual and aggregate implications under persistent volatility shocks. Section 5 introduces

some alternative specification for the model. Finally, section 6 concludes.
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2 The dynamic learning pricing model

2.1 Set up

The model is a partial equilibrium model with discrete time t = 0, 1, . . . and a fixed number of

firms i = 1, . . . , N . Firm owners choose prices pit from a finite set Ωp to maximize the present

discounted value of profits. Each firm can adjust its price costlessly in every period, so pit is

set to maximize current profit Π̂(pit, p̂t). Following Caplin and Leahy (1997) and Alvarez et al.

(2011), the profit function is set equal to:

Π̂(pit, p̂t) = γ(pit − p̂t)2 (1)

The objective (1) can be thought as a second-order approximation of a more general profit

function around its non-stochastic steady state. The details behind the approximation are

presented in Appendix 7.1. The parameter γ represents the curvature of the demand function

and p̂t is labelled as the “price-target”. Due to the approximation, p̂t is a function of marginal

costs which, I assume, are not perfectly observed by firms. Owners does not have complete

information about cost conditions, as they cannot fully observe all the aggregate shocks affecting

their production due to their own limitations to process information.5

There are two independent shocks drawn in each period t from finite sets, σt ∈ Ωσ and

εt ∈ Ωε. The price-target is set equal to p̂t = σtεt. Underlying the evolution of the shocks, there

is a probability distribution induced by a Markov Chain on Ωσ and a discretized Gaussian on

Ωε, with mean zero and unit variance. Thus, while the former shock is persistent the latter is

i.i.d. The stochastic process of the two shocks is common information across firms.6

Following Gorodnichenko (2008), I assume firms operate in segmented markets so owners

does not track prices set by others. In addition, I assume there are two different values for the

persistent shock Ωσ := {σL, σH} ⊆ R+, with σH = φσL, φ > 1. The transition probabilities

of switching from the σL to the σH state and viceversa, are labelled as τLH and τHL respec-

tively. Thus, the realization of p̂t is determined by a discretized Gaussian distribution where

its persistent volatility can be either low (L) or high (H).

5Bachmann and Moscarini (2011) also assumes an unobserved cost structure for firms. They argue how
different cost variables (such as, input price elasticities or costs structures) are hard to estimate by firms. Think
about owners that wants to maximize profits but needs to split their time in reading reports about the firm’s
inventory levels, projecting future sales, testing and developing new products, collecting information about
clients reactions to historical prices, among others. Information is imperfect in this case, as owners cannot
possibly remember all the information precisely, before setting a price.

6The definition of the target price as p̂t = σtεt, may lead to assume that the model allows for negative prices.
Based on the second order approximation, the target-price is equivalent to log(P ∗it), where P ∗it is a constant
mark-up over time-varying marginal costs, see Appendix 7.1. Hence, negative values of p̂t are consistent with
P ∗it ∈ (0, 1).
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2.2 Information Acquisition

Firms start each period with prior beliefs git(p̂t) = mit(σt)h(ε) ∈ ∆(Ωp̂) where Ωp̂ := Ωσ × Ωε.

Hence, ∆(Ωp̂) is the set of all probability distributions on Ωp̂. In the definition, mit(σt) and

h(ε) are the prior probability measures of σt and εt respectively. Since the probability of ε ∈ Ωε

is i.i.d. and its stochastic process is known, its prior probability is constant.

To set prices, owners acquire costly information about p̂t by choosing a signal sit ∈ Ωs,

where |Ωp| ≤ |Ωs|. Firm are rationally inattentive since through costly information they aim

to reduce the entropy of their beliefs, Sims (2003). Entropy (uncertainty) about p̂t is defined

as H(p̂t|St−1
i ) ≡ E[−log(p̂t)|St−1

i ], where St−1
i = {sit−1, sit−2, . . . , si0}. Then St−1

i is the infor-

mation set generated by the history of signals of firm i up to t − 1. Given the discretization,

the prior uncertainty about p̂t is H(p̂t|St−1
i ) = −

∑
σ

∑
ε git(p̂t|S

t−1
i )log(git(p̂t|St−1

i )). In the

definition, sums are taken across all possible realizations of σ and ε in their sets.

In line with RI models, the reduction in uncertainty through signals is quantified by Shannon

(1948)’s measure of mutual information flow:

I(p̂t, sit|St−1
i ) ≡ H(p̂t|St−1

i )− Esit [H(p̂t|sit)|St−1
i ] (2)

Information flow (2) is defined as the difference between prior and posterior uncertainty

(after observing sit) about p̂t, conditioning on lagged information.7 Due to the Markov struc-

ture, all the relevant historical information is summarized by the lagged value of the signal,

St−1
i = {sit−1}. Thus, as long as owners observe neither current nor lagged p̂t it is possible

to assume perfect information about further historical outcomes, without compromising the

model’s implications.

During each period t, owners choose an “information strategy” fit(sit, p̂t|sit−1)∈ ∆git(Ωs×Ωp̂)

and a “pricing strategy” pit : ∆(Ωp̂)→ Ωp. Information acquisition is then summarized by the

joint probability distribution of signals and optimal prices, where ∆git(Ωs×Ωp̂) is the set of all

probability distributions on Ωs×Ωp̂, consistent with prior beliefs git(p̂t). After the price-target

is realized, the choice of fit(sit, p̂t|sit−1) reflects the type of acquired signal based on the mental

simplification process decided by the owner.

The expression for the mutual information in (2) can be written as a function of fit(sit, p̂t|sit−1).

Proposition 1 : Mutual Information Equivalence

Shannon’s mutual information (2) is equal to:

7As described, the formula of the entropy relies on logarithms which depending on the base, changes the
units by which we measure information. If the log is base two then the information is measured in bits, while
if it is e it is measured in nats.
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I(p̂t, st|st−1) =
∑
s

∑
σ

∑
ε

f(st, p̂t|st−1)log

(
f(st, p̂t|st−1)

g(p̂t|st−1)f(st|st−1)

)
(3)

Proof in Appendix 7.2.

Thus, by setting an information strategy f(st, p̂t|st−1) and given prior beliefs, owners are

choosing the total amount of information I(p̂t, st|st−1) to acquire during period t.

2.3 The problem in two stages

Let us discuss the timing of the model. Within each period and after the realization of the two

shocks, owners face two decisions: given prior beliefs git(p̂t|sit−1), they choose fit(sit, p̂t|sit−1)

and then endowed with new information, they set prices p∗it. Owners are Bayesian as by com-

bining posterior beliefs about σt with τLH and τHL, they form prior beliefs for the next period

git+1(p̂t+1|st) = mit+1(σt+1|st)h(ε).

The pricing strategy describes how owners react to the received signal sit, by mapping pos-

terior beliefs about the unobserved target f(p̂t|sit, sit−1) ∈ ∆(Ωp̂) to optimal prices p∗it(sit|sit−1).

p∗it(sit|sit−1) = arg max
pit

∑
σ

∑
ε

Π̂(pit, p̂t)fit(p̂t|sit, sit−1)

At the information decision stage, owners face a trade-off. Signals with higher precision

allows them to observe p̂t with less noise, where the precision is determined by the channel’s

capacity (3). While owners can constantly modify the capacity, the cost of each extra unit of

information is given by λi > 0. This cost affects directly the profit function and it is assumed

different across firms.

Information is fully-flexible in the model as firms set the precision of their signals by choosing

the shape of f(p̂t, sit|sit−1), which determines total acquired information. With no further

parametric assumptions about the shape of the joint probability distribution, owners privately

decide how they want to learn about an outcome drawn from a mixture of normal distributions.

As states are unobserved, the information strategies ultimately depend on owners idiosyncratic

perceived prior distribution for p̂t:

p̂t ∼ mit(σL|sit−1)N(0, σ2
L) + (1−mit(σL|sit−1))N(0, σ2

H)

Where mit(σL|sit−1) is the prior probability attached to the low volatility state, given infor-

mation acquired in the past.
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At the first stage, given the policy function p∗it(sit|sit−1) and κit ≥ 0 defined as (3), firms

set their information strategies by choosing the conditional distribution f(sit|p̂t, sit−1) given the

time-invariant linear cost λi:

f(sit|p̂t, sit−1) = arg max
f̂(.)∈∆g(Ωs)

∑
s

∑
σ

∑
ε

Π̂(p∗it, p̂t)f̂(sit|p̂t, sit−1)g(p̂t|sit−1)− λiκit

Owners decide the precision of signals based on prior beliefs about the true distribution of

p̂t, to maximize their expected profits relative to the cost of information.

The information strategy then determines the posterior distribution of signals which, given

g(p̂t|st−1), is then equivalent to set f(p̂t, sit|sit−1). As the only purpose of costly information

is to inform pricing decisions, through signals the firm is implicitly and optimally choosing

its optimal price, by setting f(p̂t|sit, sit−1). Therefore, it is enough to solve for the optimal

distribution of prices conditional on the realization of the target-price. Matejka and McKay

(2014) and Matějka (2015) formally shows this for static RI problems, while Steiner et al.

(2017) prove it within a dynamic setting with flexible information. Intuitively, if there are two

signals which delivers the same price and since the entropy is a concave function, the firm could

ended up setting the same price while lowering its information costs.8 As prices pit ∈ Ωp are

then associated with at most one signal sit ∈ Ωs, the information strategy can be equivalently

written as the joint probability distribution between optimal and target prices.

2.4 The Dynamic RI Problem

Let us formally introduce the dynamic information acquisition problem. While the price-setting

decision is static, the unobserved and persistent distribution of p̂t implies a correlation between

consecutive periods. As the precision by which owners tries to uncover the underlying state

of the economy is subject to their choice, prior beliefs about the probability of each persistent

state mit(σjt|pit−1) where j = L,H, becomes the state variable of the problem. With only two

states, the state variable is a scalar which is convenient for writing the recursive problem.

During each period t, given prior beliefs git(p̂t|pit−1) ∈ ∆(Ωp̂) and information costs λi > 0,

owners choose fit(pit, p̂t|pit−1) ∈ ∆g(Ωp × Ωp̂) to solve the dynamic problem:

V (mit(σL|pit−1)) = max
fit(p,p̂|pt−1)

∑
σ

∑
ε

∑
p

[Π̂(pit, p̂t) + βV (mit+1(σL|pit))]fit(p, p̂|pit−1)− λiκit (4)

8Moreover, since information is costly and f(p̂t, sit|sit−1) is endogenous, necessarily I(p̂t, p
∗
it|sit−1) ≤

I(p̂t, sit|sit−1). The linearity of the cost function is relevant under a dynamic setting as it prevents the firm to
stock unused information for future periods, Steiner et al. (2017).
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Subject to:

κit = fit(p, p̂|pit−1)log

(
fit(p, p̂|pit−1)

git(p̂|pit−1)fit(p|pit−1)

)
(5)

git(p̂t|pit−1) = mit(σt|pit−1)h(ε) =
∑
p

fit(p, p̂t|pit−1) (6)

mit+1(σL|pit) = Tt+1(fit(σL|pit)) (7)

0 ≤ fit(p, p̂|pit−1) ≤ 1 (8)

Owners aim to maximize the expected value of Π̂(pt, p̂t) with respect to the perceived prob-

ability distribution of pt and p̂t, relative to the total cost of information. The cost λi forces

the firm to form a probabilistic conjecture of its optimal price, given the unobserved persistent

and i.i.d. shocks. Since the space of prices and shocks is finite, the strategy space is compact.

Therefore, from the continuity of the objective function, the RI problem has a solution.

The state variable in the value function (4) corresponds to the prior probability of being

in the low volatility state. The solution of the problem depends on several restrictions. Equa-

tion (5) corresponds to the aforementioned expression for total acquired information. Equation

(6) forces the chosen joint probability distribution being consistent with owner’s prior beliefs.

Without this constraint, owners could “forget” relevant information acquired in the past. Equa-

tion (7) characterizes the beliefs updating process. In this equation, Tt+1 represents the law of

motion of σL based on the Markov switching probabilities, while its argument is the posterior

probability attached to the current distribution of p̂t having low volatility. Finally, equation

(8) ensures that the joint probability distribution is defined correctly.

2.5 Solving the model

A fully-flexible information scheme impose a challenge on how to characterize the solution of (4)

as the shape of fit(pit, p̂t|pt−1) and its implications on κit, has a non-linear effect on continuation

values V (mit+1(σL|pit)). To tackle this issue, I rely on the solution proposed by Steiner et al.

(2017). This paper argues that a dynamic RI problem consistent with (4) is equivalent to a

control problem without uncertainty about p̂t. Because of this equivalence, firm’s continuation

value are then a function of the history of prices and shocks, so the decision about the shape of

the joint probability distribution does not affect V (mit+1(σL|pit)). Therefore, the solution for

the dynamic problem boils down to solving a collection of static problems with time-varying

priors.
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The solution of (4) subject to (5) - (8), is characterized by the following system of non-linear

equations.
Proposition 2 : Solution of the Dynamic RI problem

mit(σL|pit−1) = (1− τLH)fit−1(σL|pit−1) + τHL(1− fit−1(σL|pit−1)) (9)

fit(pt|p̂t, pit−1) =
exp [(Π(pit, p̂t) + βV (mit+1(σL|pit))) /λi] fit(pt|pit−1)∑
p′ exp

[[
Π(p

′
it, p̂t) + βV (mit+1(σL|pit))

)
/λi
]
fit(p

′
t|pit−1)

(10)

V (mit(σL|pit)) = λiE

[∑
p

exp [(Π(pit, p̂t) + βV (mit+1(σL|pit))) /λi] fit(pt|pit−1)

]
(11)

Proof in Appendix 7.3.

For any given value of λi > 0, (9), (10) and (11) summarizes the main equations that

solve the problem. Equation (9) is the prior probability of being in the low volatility state,

as a function of the Markov transition probabilities and lagged acquired information. The

expression then corresponds to the functional form of Tt in equation (7). The prior probability

for the high volatility state mit(σH |pit−1) is then the complement of (9). These two probabilities

are embedded into git(p̂t|pit−1) to force prior beliefs being consistent with the joint probability

distribution, as stated in (6).

The conditional probability of pt given unobserved shocks and lagged prices fit(pt|p̂t, pit−1),

i.e. the information strategy, is characterized in (10). The probability resembles the Dynamic

Logit formula, except for the term fit(pt|pit−1) which multiplies the benefit-cost ratio of setting

price pt. As fit(pt|pit−1) is independent of realized shocks it is interpreted as owner’s “predis-

position” to chose pt ∈ Ωp without additional current information. Specifically, Steiner et al.

(2017) characterized firm’s predisposition as prices that are chosen with high probability on

average across outcomes and states, i.e. f(pt|pt−1) = Ep̂t [f(p|p̂t, pt−1)]. The posterior choice

probability fit(pt|p̂t, pit−1) is then a function of λi, as its magnitude determines the amount

of information to process and with this, the weight attached to prior probabilities. Pricing

decisions are drawn from (10) reflecting the noisy signals that owners receive, whilst being

consistent with their own state-dependent beliefs. Finally, equation (11) shows the expression

for the continuation value of the firm. I will refer to Appendix 7.3 for the specific derivation of

these last two expressions.
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Due to imperfect information about both the outcome and its time-varying distribution,

there is no specific close-form for the posterior probability fit(pt|p̂t, pit−1).9 Moreover as in-

formation cost affects non-linearly both the posterior probability and continuation values, it

is difficult to anticipate how the different values of λi would affect the information strategies.

Without any known form of posterior uncertainty, the model is solved numerically.

3 Numerical Solutions

3.1 The algorithm

In this section, I provide an iterative algorithm to solve the dynamic information problem (9),

(10) and (11, where its main parameters are calibrated.

Before solving the model numerically, I rely on further assumptions about the number of

points on the simplex for each variable. The computational intensity of RI models severely

restricts this decision, Tutino (2013). Let |Ωε| = 11 and |Ωp| = 21 be the number of possible

values that the idiosyncratic shock εt and prices pit, can assume respectively. The different

values that p̂t can take, comes from a linearly equally spaced grid ranging from −2σH to 2σH .

Based on the definition for p̂t = σtεt, the two unobserved states for σt and the assumption for

|Ωε|, |Ωg(p̂)| = 21.10 Since git(p̂t) = mit(σ)h(ε), the state variable in the discretized problem

is defined as the probability of being in the low state mit(σL) ∈ ∆(Ωσ), where ∆(Ωσ) is the

belief simplex. The dimension of the belief simplex is assumed |∆(Ωσ)| = 21, where each point

reflects distinct (equally spaced) values for the marginal probability of being in the low state,

in the (0,1) interval.

With the assumed discretization, I now describe the algorithm to solve the dynamic RI

problem.

1. The procedure starts by fixing a value for the idiosyncratic cost, e.g. λ1.

2. Given λ1 and starting from the first value in ∆(Ωσ), we set prior beliefs g(p̂t) = m(σt)h(ε),

with dimension 2× 11.

3. Fixing the value for g(p̂t), the model is solved by Value Function Iteration.

9Starting from the same model but where the underlying distribution of p̂t is known with certainty (i.e.
a static framework), there would be a close form expression for the posterior uncertainty. With a quadratic
objective and Gaussian distributions, the model boils down to a Bayesian Updating set-up, where the posterior
distribution of prices is equal to a weighted sum between prior beliefs and signals. Under RI, the weight attached
to signals becomes the choice variable of the problem.

10The number reflects that the average for the target E(p̂) = 0, is the same under the two possible distribu-
tions.
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3.1. Starting with a guess for the vector V (mt+1(σL)), the algorithm solves the static

problem by computing f(pt, p̂t|pt−1) ∈ ∆(Ωp × Ωσ × Ωε) which solves the system of

nonlinear equations consistent with (6), (10) and f(pt|pt−1) = Ep̂t [f(p|p̂t, pt−1)].11

3.2. With the chosen f(pt, p̂t|pt−1), the marginal f(σ|pt, pt−1) =
∑

ε f(σ, ε|pt, pt−1) is cal-

culated for each pt ∈ Ωp. Through (9), posterior beliefs are updated to form prior

beliefs for the next period, which are used to update V (mt+1(σL)).

3.3. Using the expression for V (mit(σL|pt)) in (11), the algorithm iterates the Value

Function until convergence where within each iteration it re-estimates f(pt, p̂t|pt−1).

4. Repeat 3. entirely for all possible values in ∆(Ωσ), i.e. setting different priors g(p̂t).

5. Repeat 2., 3. and 4. for all the values for λi.

The price-tracking setting of the model and the decision on the shape of the joint probability

distribution, resembles a filtering problem. The discretized setting for prices and shocks could

immediately raise some concerns on its consequences for filtering. Departing from a continuos

setting is not a numerical issue depending on the accuracy of the discrete approximation.12

Evidence on discrete filtering support the previous statement. The numerical discrepancies

between filtering with discrete relative to continuos outcomes are not significant, and depends

on the nature of the discrete approximation, Farmer (2016) and Farmer and Toda (2017).

3.2 Calibration

The set of unknown parameters in the model are: the discount rate β, the two Markov Switching

probabilities τLH , τHL, the price elasticity of demand η (which defines the curvature of demand

γ), the low and high volatility states σL, σH = φσL and the different information costs assigned

to firms {λi}Ni=1. Each period is assumed to be a month, so I set the discount factor equal

to β = 0.999. The two transition probabilities are choose to be consistent with the literature

of uncertainty shocks, τLH = 0.01 and τLH = 0.036. These monthly transition probabilities

implies a quarterly probability of moving from the low to the high volatility state of 2.9%

and a probability of remaining in the high volatility state of 89%. These numbers are roughly

in line with Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry (2014) estimates for the

U.S. Finally, the price elasticity of demand is set at θ = 5 (implying a 25% markup). This

is also consistent with existing models of price rigidities, Burstein and Hellwig (2006). Hence,

γ = −1
2
θ(θ − 1) = −10 as derived in appendix 7.1.

The remaining four parameters are calibrated to replicate different stylized facts on individ-

ual price changes reported from microeconomic data sets. In line with this approach, Woodford

11Although the static solution of the model is extremely computationally intensive, I gained a lot of efficiency
by iterating directly over the FOC condition, as suggested by Lewis (2009).

12Tauchen (1986) discussed optimal ways to discretize a stationary continuous process
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(2009) also collects empirical facts from several studies to assess the ability of his model to

replicate documented features. Particularly, I take the stylized facts from the results in Klenow

and Kryvtsov (2008) and Vavra (2013). These two papers rely on the Bureau of Labor Statistics

monthly micro data which is used to construct the CPI in the US. Klenow and Kryvtsov (2008)

reported the presence of both small and large price adjustments. They argued that almost half

of the time a price is changed, the magnitude of the adjustment is less than 5%.13 In addition,

Vavra (2013) provided evidence on countercyclical price-change dispersion by showing that the

standard deviation of price changes (from the cross section of firms) increases by approximately

25% during episodes of high volatility (NBER recessions). He also shows that the frequency

of price changes also increases during recessions, leading to a positive comovement between

frequency and price change dispersion over time.

The model-implied moments are generate by simulating an economy with N = 7, 500 firms

and T = 5, 500 periods, using the algorithm described in 3.1. In the simulations the economy

is allowed to evolve naturally across states and shocks, and I rule out the first 500 periods.

To set the heterogeneity, I assume there are 15 distinct values for λ which are randomly and

uniformly assigned across firms, i.e. 15 × 500 = 7, 500. Without further evidence about the

cost distribution, I assume λi ∼ N(λ, σ2
λ) where the distribution is truncated at zero. Given λ

and σλ, the different values of λ are set by the 15 equidistant percentiles, from 2.5 to 97.5 of

this distribution. The remaining four parameters of the baseline model {σL, φ, λ, σ2
λ} are finally

calibrated to replicate the data.

3.3 Matching Moments

The first two columns of Table 1 shows the moments chosen from the data and its simu-

lated counterparts using the baseline model. The first two targeted moments correspond to

evidence at the cross-sectional level, while the remaining two are evidence at the time series

level. All these measures are calculated conditioning on a price change occurring. In the table,

Prob(|∆p|) < 5% is the proportion of prices changes that are smaller than 5%. Kurtosis(|∆p|)
is the coefficient of kurtosis from the distribution of prices changes. Stdv(Dispersion) and

Stdv(Frequency) stands for the relative standard deviation of dispersion and frequency of

price changes respectively. As shown below, while the model reproduces some degree of price-

stickiness, the predicted frequency of price changes is higher relative to the data. I then targeted

the relative dispersions to have comparable (standardized) variability-related measures, allow-

ing me to assess the extend by which the model replicates the dynamic evolution of price

changes.

According to the results, the model is able to reproduce these four features of the data

simultaneously. I believe this is one of the first studies to match different moments from data

13In addition, Midrigan (2011) shows how the distribution of price changes ∆p resembles a normal distribution
centered at zero, with a standard deviation of 8.2%.
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through a purely dynamic RI model, i.e. without imposing additional frictions. The model also

fairly replicates additional non-targeted moments. While the simulated Median|∆p| is only half

of what is observed in the data, the model is close to match the proportion of price changes that

are less than 2.5% in absolute value. One of the main features of the baseline specification is that

its able to endogenously generate the positive correlation between dispersion and the frequency

of price changes, without further assumptions. The simulated correlation Corr(Dis, Freq) is

approximately 0.2, while in the data is roughly 0.28. In section 4, I simulated a transition

between states to stress its pricing dynamics and to show the mechanism by which the model

generates this positive correlation.

Table 1: Matched Moments and Alternative Specifications

Targeted Moments Data Baseline Static Homogeneous Costs

Prob(|∆p|) < 5% 0.443 0.434 0.401 0.497
Kurtosis(|∆p|) 6.403 6.098 6.433 6.374
Stdv(Dispersion) 0.354 0.323 0.341 0.296
Stdv(Frequency) 0.120 0.096 0.173 0.091

Non-Targeted Moments

Median|∆p| 0.097 0.050 0.039 0.048
Prob(|∆p|) < 2.5% 0.254 0.193 0.258 0.209
Corr(Dis, Freq) 0.276 0.199 -0.009 -0.075

Notes: The Prob(|∆p|) < 5%, Prob(|∆p|) < 2.5% and the Median|∆p| comes from Tables III and IV in

Klenow and Kryvtsov (2008). These first two moments represent the proportion of firms that produced small

adjustment on their prices, 5% and 2.5%, respectively. Median|∆p| corresponds to the median of the absolute

price growth. The remaining moments comes from Table I and IV in Vavra (2013). Kurtosis(|∆p|) represents

the Kurtosis of the distribution of absolute price change, Stdv(Dispersion) and Stdv(Frequency) stands for

the Relative Standard Deviation (coefficient of variation) for dispersion and frequency of prices changes and

finally, Corr(Dis, Freq) is the time series correlation between dispersion and the frequency of price changes.

The calibrated parameters are shown in Table 2. According to the results, the volatility of

the price target in the high state increases by 74% with respect to the low state σL = 0.091. The

rise in volatility is in line with estimated uncertainty parameters during episodes of economic

distress, Bloom et al. (2014). The average cost of attention is estimated at 0.039, which accounts

for a 4% of the average revenues of a firm. The magnitude of the standard deviation for the

attention cost σλ = 0.02 is considerable as it represents almost half of the average cost. Being

one of the key parameters in the theory of RI, the results are relevant as they shed light on

the degree of dispersion of information rigidities across firms. While the calibrations rely on a

parametric assumption about costs, they are informative to provide a quantitative assessment

on the potential spread of information-related frictions.
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Table 2: Calibrated Parameters

Parameter Value Description

β 0.99 Discount Rate
γ -10 Curvature of demand function
τLH 0.01 Monthly transition probability: low/high state
τHL 0.036 Monthly transition probability: high/high state
σL 0.091 Volatility in low state
φ 1.74 Increase in volatility in high state

λ 0.039 Mean distribution information cost
σλ 0.02 Stdv distribution information cost

3.4 Quantitative exploration of the model

Based on calibrated parameters, let us describe the different implications of information deci-

sions on price-setting as a function of information costs.

3.4.1 Simulated Information Strategies

Before setting prices, owners set their information strategies. Uncertainty about the distribution

of p̂t leads information decisions to depend on prior beliefs about each state. Figure 1 shows

total acquired information κit, as a function of different prior probabilities assigned to the

economy being in the low volatility state. The relationship is plotted for four different values

of the information costs, where λ1 < λ5 < λ10 < λ15.14 As the perceived predictability of the

unobserved-target increases, owners find it optimal to acquire less information. Hence the flow

of information, which determines the learning rate, is not only disciplined by the cost. It is also

affected by owners subjective beliefs about the underlying distribution that is generating the

price-target.

Let us provide further intuition on how owners learn by simulating conditional probabilities.

For expository reasons, I present the simulated information strategies for λ1 and λ15 and for

different prior probabilities. This is shown in Figure 2. Aa the joint probability distribution

depends on three random variables, i.e. fit(pit, σt, εt|pit−1), I present compute the “predisposi-

tions” fit(pit|pit−1) =
∑

σ

∑
ε fit(pit, σt, εt|pit−1). Embedded in pit−1 are the prior beliefs about

σt.

Imperfect information and uncertainty about the correct distribution of the price-target,

make owners more prone to choose within a smaller set of prices. The left panel of Figure 2

shows the information strategies for λ15, where the price-setter attaches high (80%), medium

(50%) and low probability (20%) of being in the low volatility state. As information is very

imprecise, instead of being predisposed to set prices closer to the mean the firm attaches more

14The information costs are extracted from the 15 normally distributed values for λ. Their labels corresponds
to the 1st, 5th, 10th and 15th values.
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Figure 1: Total Information
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Notes: The figure presents total acquired information with respect to prior probabilities attached to the economy

being in the low volatility state. The relationship is shown across different values of the information costs.

probability to prices away from it. Prices that were assigned with a larger probability ex-ante,

i.e. before new information, are weighted more heavily when setting posterior beliefs. Hence,

this subset of prices are more likely to be finally chosen as owners ultimately set prices by

randomizing over the posterior distribution. This way, the owner is confident that at least she

is reducing the probability of making large mistakes on average, to the utmost. This is consistent

with her objective to minimize conditional variance. As the prior probability assigned to the

low volatility state decreases, the owner modifies her information strategy by moving more

probability mass towards extreme realizations, which are now perceived more likely. When the

prior probability is low (lowest-left panel), the distribution suggests that the owner spends all

its information efforts in noticing the sign of the outcome along with uncovering any potential

extreme realization.

With additional information, owners will distinguish more precisely the relative position of

the target and will distribute the probability accordingly. The right panel of Figure 2 shows the

same three cases for the lowest information cost. As owners observe more precise signals, they

are less inclined to set any specific price beforehand. They allocate their ex-ante probability

more evenly across all potential realization of the target, in order to attach a significant amount

of weight to new information. Under high probability of being in the low volatility state (top-

right panel) the shape resembles a Normal distribution. When new information suggests that

the economy may be in the less predictable state, owners again redistribute prior probability

from the average towards extreme realizations.
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Figure 2: Evolution of firm’s predisposition

0
.0

5
.1

.1
5

.2
.2

5
P

ro
b

(p
it
|p

it
−

1
)

−.4 −.2 0 .2 .4
Prices

λ15 − Prior Prob(σL = 80%)

0
.0

5
.1

.1
5

.2
.2

5
P

ro
b

(p
it
|p

it
−

1
)

−.4 −.2 0 .2 .4
Prices

λ1 − Prior Prob(σL = 80%)

0
.0

5
.1

.1
5

.2
.2

5
P

ro
b

(p
it
|p

it
−

1
)

−.4 −.2 0 .2 .4
Prices

λ15 − Prior Prob(σL = 50%)

0
.0

5
.1

.1
5

.2
.2

5
P

ro
b

(p
it
|p

it
−

1
)

−.4 −.2 0 .2 .4
Prices

λ1 − Prior Prob(σL = 50%)

0
.0

5
.1

.1
5

.2
.2

5
P

ro
b

(p
it
|p

it
−

1
)

−.4 −.2 0 .2 .4
Prices

λ15 − Prior Prob(σL = 20%)

0
.0

5
.1

.1
5

.2
.2

5
P

ro
b

(p
it
|p

it
−

1
)

−.4 −.2 0 .2 .4
Prices

λ1 − Prior Prob(σL = 20%)

Notes: The two panels show the firms predisposition evolution fit(pt|pit−1) for different prior beliefs about the

low volatility distribution. The evolution on the left (blue lines) is due to the low information cost firm, while

the evolution on the right (red lines) corresponds to the high information cost firm.
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Information costs not only disciplines the quality of the search, they also force owners to

form a probabilistic conjecture about the likelihood of extreme realization of the target, which

lastly affects their pricing decisions over time.

3.4.2 Implications of (heterogeneous) imperfect information

In Table 3, I present the consequences of different information costs with respect to profit

loss π̂it and price changes ∆pit. As expected, access to lower information costs allow owners

to track the realizations more closely leading to lower profit losses. This feature is always

true independently of the state of the economy however during recessions, the differences are

amplified.

As a consequence of the normal distribution assumed for the target price, the average for

∆pit is zero. However, there is a clear negative relationship between the cost of attention and the

dispersion of price changes. This is precisely what allows the model to replicate the proportion

of small and large price adjustments observed in the data. The impossibility of tracking p̂t

closely, lead high cost firms being more predisposed to set prices around the average (as shown

in figure 2). Thus although prices can change at any time, the magnitude of the change will

be bounded due to price-setters own decisions on how they choose to learn. The magnitude of

the adjustments increases as the outcome is observe with higher precision, which is the case for

lower values of λ. The results are interesting as they provide an alternative explanation to this

feature of the data, driven by cognitive limitations to collect information.

Table 3: Implications of Imperfect Information

All Low Volatility High Volatility

Profit Loss Mean Stdv Mean Stdv Mean Stdv

λ1 0.0027 0.0014 0.0030 0.0011 0.0015 0.0015
λ5 0.0146 0.0043 0.0142 0.0020 0.0161 0.0084
λ10 0.0226 0.0065 0.0219 0.0052 0.0250 0.0095
λ15 0.0381 0.0176 0.0361 0.0163 0.0451 0.0201

∆pit

λ1 0.00002 0.0743 0.0002 0.0593 -0.0005 0.1134
λ5 0.00002 0.0658 0.0001 0.0524 -0.0004 0.1004
λ10 0.00002 0.0606 0.0001 0.0467 -0.0004 0.0955
λ15 0.00002 0.0508 0.0001 0.0368 -0.0004 0.0840

Notes: In the table, the values of the costs are λ1 = 0.0064, λ5 = 0.0298, λ10 = 0.0463 and λ15 = 0.0776. The

values are computed as the average of the four different categories across firms and time.
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3.4.3 Belief-driven pricing decisions

How frequent pricing decisions are made under “correct” beliefs about the current distribution?

Figure 3 provides a measure to assess the accuracy of beliefs. In the figure, the black and the red

line represents the Prob(fit(σL|pit, pit−1) > 1
2
|σt = σL) and Prob(fit(σH |pit, pit−1) > 1

2
|σt = σH)

respectively, i.e. the probability that posterior beliefs about the correct distribution are greater

than a half. Conditional probabilities are calculated for all distinct values of λ.

Figure 3: Accuracy of Beliefs
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Notes: The figure presents the probability of setting prices based on the correct distribution for p̂. The black and

red lines represents Prob(fit(σL|pit, pit−1) > 1
2 |σt = σL) and Prob(fit(σH |pit, pit−1) > 1

2 |σt = σH) respectively.

This is a measure on how likely is that owners set prices attaching higher probability to the true distribution.

The results suggest that when the economy is in the low volatility state, around 95% of

times owners set prices based on correct beliefs about the underlying distribution. This feature

is independent of the magnitude of information costs and its explained by the higher persistence

of expansions relative to recessions.15 This is not longer true during high volatility episodes as

the cost of information harms the precision of beliefs. In this case the accuracy starts at 80%

for the lowest value of λ, and then starts falling monotonically as the cost increases reaching

65% when λ15. Thus when the economy enters into a high uncertainty state (e.g. a recession),

a significant proportion of firms would keep making pricing decisions as if the state is still the

low volatility one. This time-varying discrepancy of beliefs is then crucial to explain the sources

of price dispersion, as discuss in the next section.

Additional quantitative implications of the model are discussed in the appendix. Owners

always face an outside option: set the optimal price at the unconditional mean of p̂t (which is

15According to the transition probabilities τLH , τHL, the unconditional probability of the low state is 78%.
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independent of the distribution) without paying for further information. In section 7.4 of the

appendix, I show that firms always prefer to acquire information independently of the value of

λ. Moreover, I introduce a measure to assess the robustness of estimated costs by bounding

their values based on the two polar cases: Full information and no information.

4 Delayed Learning Dynamics

In this section, I show the transition dynamics of the model by simulating an exogenous change

of state in the economy. I assume the economy remains in the low volatility state for several

months (300 periods) and then, it enters into a recession at time T which last for 28 months

(the average duration of a crisis given the calibrated parameters). After this, the economy

moves back to the low volatility state. Keeping the assumed transition of states constant, I

simulate a 1,000 economies with 150 firms each where, as in the calibrations, I allocate the 15

different information costs uniformly across them.16 Finally, I average the different variables

across economies at each point in time.

4.1 Firm Level Evolution

Initially, I present results for two different firms at the two extremes of the cost distribution λ1

and λ15. The evolution of total acquired information κit, posterior beliefs about the high state

fit(σH |pt, p̂t, pit−1) and the absolute magnitude of price changes |∆pit| for both costs are shown

in Figure 4. In the figure, the two dotted vertical lines represents the high volatility state.

According to the time series evolution of total information and due to active learning, owners

endogenously acquire more information under the less predictable state. The impossibility to

notice immediately the new distribution cause a sluggish reaction in the rate by which firms

increase their acquired information.17 As economic recessions are episodes of a significant rise

in uncertainty, the predictions of the model are consistent with the presence of countercyclical

attention, in line with the empirical results in Coibion and Gorodnichenko (2015). Based on the

behavior of professional forecasters, the authors argue that the degree of information rigidities

(a proxy for the total level of inattention) went down during episodes of higher volatility in the

U.S. This is interpreted as an increase in the amount of collected information.

The middle panel of Figure 4 shows the evolution of posterior beliefs about the probability of

being in the high volatility state. Imperfect information about persistent states endogenously

generates persistence in beliefs. Costly information prevents owners to notice a change in

16Generating 1,000 replicas of the state transitions brings significant computational challenges. To partially
reduce the length of computing times, I took a smaller set of firms, relative to what was assumed for the
calibration.

17The RI model is solved based on natural logs. To measure the total amount of information in “bits”, I
scaled the total amount of information by 1

log2(exp(1))
.
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Figure 4: Time varying evolution: Firm Level
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Notes: In all the figures, the vertical dotted black lines represent the high volatility episodes. The top figure

presents the evolution of total acquired information κit for the firms with low information cost (solid blue line)

and for the high information cost one (red dashed line). The middle figure shows the evolution of the posterior

probability of the economy being in the high volatility state while the bottom figure shows the evolution of the

absolute value of price changes ∆pit.
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the distribution immediately. Particularly, the rate by which the beliefs updating process

is delayed is disciplined by the magnitude of information costs. While the low cost owner

(λ1) starts attaching higher probability to the high state after the fifth month, the high cost

owner (λ15) does it at the ninth month. Hence, the model generates disagreement about the

true underlying distribution for p̂t during the transition, which finally affects both pricing

and posterior information decisions. In addition, the model’s prediction about time-varying

heterogeneous beliefs across firms is also supported by the data, Kumar, Afrouzi, Coibion and

Gorodnichenko (2015).18

The effects on |∆pit| are shown in the bottom panel of Figure 4. While the magnitude

of price changes is expected to increase under the high volatility state, firms does not adjust

immediately after a change of state. The figure shows a clear delay in the rate by which firms

amend their pricing decisions during the first months of the high volatility state. This is the

direct consequence of heterogeneous and persistent beliefs about the true distribution of the

price-target. The bigger gap between the two firms during high volatility episodes, indicates

the presence of higher price-change dispersion which is consistent with the empirical evidence.

The transition dynamics are different depending on the state of the economy. When a

high volatility episode is over, owners need around four to five months to notice the change

independently of their information costs. This contrast their behavior at the onset of the

recession. The asymmetric reaction is explained by the different information strategies. Owners

keep collecting additional information even after the less predictable state is over, due to their

impossibility to notice immediately the new distribution. While this amount of information is

not optimal from a cost-effectiveness analysis, higher information efforts allows them to notice

the new state relatively faster than before causing asymmetric learning rates over the cycle.

4.2 Aggregate Evolution

To study the overall implications of costly information over time, I aggregate information and

pricing decisions across all firms. Figure 8 presents the time series evolution of price-change

dispersion (measured by the inter quantile range) and in the secondary axis, the evolution of

the frequency of price changes. Although there are no specific costs to adjust prices in the

model, the presence of dynamic imperfect information is enough to simultaneously generate

countercyclical price dispersion, with an average increase of 16% during the high volatility

state, along with a positive correlation between dispersion and frequency of price changes.

Price dispersion is time-varying due to owners private efforts to collect noisy information, which

prevents them to recognize promptly a new distribution. In addition, price dispersion provides

a measure of the dynamic inefficiencies caused by the information rigidity. Since all firms

track the same p̂t, dispersion is zero under full-information. This is relevant, as it revisits the

18Although the paper documents the presence of time-varying beliefs about the inflation rate, I see this as a
valid proxy for the beliefs about an aggregate price index, such as p̂t.
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implications of imperfect information on the distortion of relative prices, through a dynamic

learning mechanism.

Figure 5: Aggregate Evolution
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Notes: The figure presents the time series evolution of price-change dispersion and the frequency of price changes

(secondary axis). The dotted lines shows the time frame when the economy is in a recession.

While the possibility to replicate some nontrivial stylized facts is always desirable to validate

the insights of the model, the richness of the exercise rely on the alternative assumptions that

accomplish this. The existing literature rationalized this dynamic behavior as a consequence

of price-rigidities combined with firms facing time-varying idiosyncratic shocks, Vavra (2013).

None of these assumptions are need in this dynamic information model. Understanding the

sources of price distortions through an information-driven rather than a price-rigidity mech-

anism is important for the design of policies. In particular, the scope by which policies can

effectively reduce price instabilities are very different, depending if the source of the distortion

comes from information rather than price-setting frictions. This line of reasoning does not

imply that price-rigidities are not important. Ideally we will like to move closer to a setting

that combines price-stickiness with dynamic attention.19 As the main motivation of the paper

is to stress the implications of dynamic imperfect information on pricing decisions, I leave this

possibility open for future work.

Regarding the presence of time-varying idiosyncratic shocks, the baseline model intentionally

rules out this possibility. However, I can incorporate this feature within my setting by assuming

p̂it = σtεit. Allowing for p̂it would certainly make the set-up less controversial, as now the model

incorporates the presence of idiosyncratic shocks at the firm level along with ruling out the

19As noticed in Figure ??, while the baseline model has proven effective to match the dynamics it is still not
able to match the level of price-stickiness.
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possibility of learning from others. I conjecture that the additional level of dispersion imposed

by εit, would amplify price-dispersion making the task of replicating the data less challenging.

I depart from this assumption mostly to stress the implications of imperfect information to the

utmost. Under p̂it price-change dispersion can now be labelled as efficient as firms constantly

track different prices. This would obscure the mapping of imperfect information on deviations

from optimal values along with its implications during highly unpredictable episodes, when

information is valued the most.

4.3 What drives the increase in dispersion?

Although the model replicates the empirical evolution of price-change dispersion its dynamic

features call for further explanation. As the price-target becomes less predictable during high

volatility states, it is not clear the extend by which the effects on price dispersion are due to

exogenous shocks relative to owners endogenous reaction to the unobserved new distribution.

This is relevant due to the empirical evidence suggesting that the source of countercyclical price

dispersion is mostly driven by agents responsiveness, rather than higher volatility of exogenous

shocks, Berger and Vavra (2017).

To shed light on this feature, I decompose the total variance of price changes conditioning

on idiosyncratic information costs, V ar(∆pit) = E[V ar(∆pit)|λ]+V ar[E(∆pit)|λ)]. Since costs

are assigned randomly, I can group firms based on this time-invariant feature. The first element

on the right hand side of V ar(∆pit) captures the price change dispersion within firms sharing

the same information costs, while the second element computes the dispersion between firms

facing different costs. The proportion of total variance explained by heterogeneous costs, the

between effect, is shown in Figure 6. To characterize its time varying evolution, I replicate the

same transition dynamics as in the previous section.
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Figure 6: Variance Proportion - Between Effect
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Notes: The figure presents the evolution of the proportion of total variance explained by the between effect.

This effect is captured by the time-invariant heterogeneous information costs that owners face in the model.

The transition dynamics across states is the same as in the previous sections, where the vertical dotted lines

shows the recession period.

During the low volatility state the between effect accounts for around 14% of total dispersion.

At the onset of the more uncertain state, and although the target becomes exogenously less

predictable, the proportion of dispersion cause by endogenous responses increase by a non-

negligible 25%. The initial rise in price dispersion is then mostly driven by the heterogeneous

and persistent beliefs about the current distribution. Since beliefs guide pricing decisions, price

dispersion is endogenously amplified. The between effect starts to decrease monotonically as

owners recognize the new distribution. This behavior is then in line with the empirical evidence,

as the detrimental effects of a recession are initially attributed to a rise in responsiveness rather

than higher volatility of shocks.

5 Alternative specifications

The model has two distinct features that makes it appealing to understand the sources behind

price-change dispersion: dynamic information and the presence of heterogeneous information

costs. To gain intuition about the role each of these assumptions plays in the results, in this

section I stress the main consequences of abstracting from each of these two channels.
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5.1 A Static problem

The baseline model is dynamic due to firms impossibility to observe the persistent distribution.

Alternatively, I can solve a simpler version of the model where I keep the structure for the

unobserved target-price p̂t = σtεt, but where owners know with certainty the current state of

the economy σt. In this setting, firms acquire costly information to track the i.i.d. shock εt.

The problem becomes a standard static RI problem with a quadratic objective and Gaussian

signals. To make the results comparable with the discretized baseline model, I solve the model

by maximizing (1) relative to costly information (5), subject to (6) and (8). The solution of

the static problem is:

fit(pt|p̂t) =
exp [(Π(pt, p̂t)) /λi] fit(pt)∑
p′ exp

[[
Π(p

′
t, p̂t)

)
/λi
]
fit(p

′
t)

(12)

Where the optimal price p∗it is drawn from equation (12). As in the baseline model, fit(pt)

stands for firm’s predisposition to set price pt but now pricing decisions are independent of

lagged prices.

5.2 Homogeneous Information costs

Alternatively, I study the implications of allowing for homogeneous information costs. This

model shares the same dynamic set-up as in the baseline specification, but without dispersion

in information costs λ, i.e. σλ = 0.

5.3 Implications for price change dispersion

To provide a correct comparison, I re-calibrate the parameters of these alternative specifications

to match the same targeted moments as in the baseline model. The results are presented in

the last two columns in Table 1.

In the static set-up, both the Kurtosis and the relative standard deviation of price change

dispersion are closer to the data relative to the baseline case. Higher relative precision to

replicate Kurtosis is also true under the homogeneous costs specification. Besides the relative

precision to match targeted moments these results supports a broader issue: despite being

computational intensive, models allowing for costly acquisition of information are proven useful

to match non-trivial moments from microeconomic data on price-setting. However neither the

static nor the homogeneous cost model is able to generate the positive correlation between

dispersion and frequency of price changes. The failure to generate this result was not obvious

ex-ante. Firms with homogeneous information costs can still set different prices since they

are drawn from their (equal) posterior beliefs. Moreover these two alternative settings also
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generate higher information acquisition during high volatility episodes, leading to time-varying

frequencies of price updating. However the interplay between a dynamic information setting

and heterogeneous costs, is what allows the baseline model to replicate the dynamic features

of data. The presence of persistent beliefs which generates sluggish pricing reactions combined

with heterogeneous beliefs about the unobserved distribution, is what endogenously generates

the positive comovement between price dispersion and frequency.

Figure 7 shows the evolution of price dispersion for the three alternative models. To make

the evolutions comparable, I recalculated the simulated transition using the original parameters

as in Table 2, and I normalize the first values of the dispersion to 100. The amplification effect

caused by the two assumptions in the baseline model is now more marked. When the economy

enters into the high volatility state, price dispersion increases by 8% and 7% approximately

in the static and homogeneous costs cases, while the increase in the baseline set-up accounts

for 16% approximately. In appendix 7.5, I present a broader comparison of the three models

by looking at the (unscaled) evolution of price dispersion, frequency of price changes and the

percentage of firms updating their total information.

Figure 7: Price Dispersion - Model Comparison
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Notes: The figure presents the evolution of price change dispersion for the baseline model (black dotted line),

static model (gray line) and homogeneous costs (green line). In the figure, the first observation of price dispersion

is normalized to a 100.

While the static setting is not particularly meaningful to discipline the dynamics of price

dispersion, it provides interesting insights on the effects of endowing firms with additional

costless information. Certainty about the current distribution makes the problem of collecting

information easier as now owners focused all their information efforts on uncovering the realized

target-price. This leads to a reduction in the inefficient price dispersion of 10% relative to the

baseline case. The static case resembles a setting where firms receive costless and fully-precise
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signals about the actual state of the economy at the beginning of each period. As previously

discussed, these type of results can have broader implications as they support the design of

policies aiming to manipulate agents expectations, by providing them with additional accurate

information.

6 Conclusions

This paper studied price-setting decisions under dynamic costly information. In line with

existing models, owners collect information about an unobserved target-price before setting

prices. In the model, besides the outcome, firms does not perfectly observe the persistent

distribution that generated the target. Information is dynamic and fully-flexible as owners

choose total information to acquire as well as how they want to learn about the outcome. After

calibrating the parameters, I argued that the model is able to rationalize several stylized facts

from the micro price-setting literature, where imperfect information is the unique rigidity. The

model generates persistence in beliefs which are crucial to match the data. The paper stressed

the importance of incorporating costly information as an relevant friction faced by price-setters.

While imperfect information is enough to match the dynamic features of the data, this rigidity

can be complemented with common assumptions about state-dependent pricing. The possibility

of matching the data relies heavily on the combination of a dynamic setting with time-invariant

heterogenous information cost. By abstracting from any of these two channels, the model is

not capable to simultaneously replicate the dynamic features of the data.

Although the paper revolves around price-setting decisions, the model is general and tractable

enough to be extended to alternative settings where the intension is to study agents decisions

within a dynamic and fully-flexible learning scheme. This is because the solution does not

depend on any specific objective function or in a particular parametric distribution for the un-

observed shocks. With respect to dynamic learning, it can be interesting to explore further some

of the results in future projects. For instance, I think is important to explore deeply the con-

sequences of endogenous asymmetric learning rates over different states of the economy. While

asymmetric responses due to imperfect information have been studied before, Van Nieuwer-

burgh and Veldkamp (2006), there is no additional evidence in the context of costly entropy

reduction where different learning rates arise as a consequence of agents private efforts.

The main motivation behind this paper was to assess the time-varying implications of costly

information for the inefficient allocation of prices. Understanding the sources of inefficient price

dispersion through a purely information set-up it is then crucial, as it dynamic patterns are

expected to react to different economic environments or communicational policies.
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7 Appendix

7.1 Appendix A: Profit Function Approximation

The derivation follows closely Alvarez and Lippi (2010). All firms share the same profit function

Π(Pt, Yt, Ct) = YtP
−η
t (Pt − Ct). Where η > 1 represents the constant price elasticity, Yt is the

intercept of the demand (i.e. its a demand shifter) and Ct is the marginal cost at time t. I

assume that Yt and Ct are perfectly correlated, i.e. when costs are high demand is also high. In

order to approximate the objective function as (1), I compute a second order approximation of

Π(Pt, Yt, Ct) around its frictionless price. In the context of Rational Inattention, the frictionless

price is then the optimal price under full information P ∗t .

The second order approximation of Π(Pt, Yt, Ct)

Π(Pt, Yt, Ct) ≈ Π(P ∗t , Yt, Ct) +
∂Π(Pt, Yt, Ct)

∂Pt

∣∣∣∣
Pt=P ∗t

(Pt − P ∗t ) +
1

2

∂2Π(Pt, Yt, Ct)

∂P 2
t

∣∣∣∣
Pt=P ∗t

(Pt − P ∗t )2

Which can be written:

Π(Pt, Yt, Ct)

Π(P ∗t , Yt, Ct)
= 1 +

1

Π(P ∗t , Yt, Ct)

∂Π(Pt, Yt, Ct)

∂Pt

∣∣∣∣
Pt=P ∗t

P ∗t
(Pt − P ∗t )

P ∗t

+
1

2

1

Π(P ∗t , Yt, Ct)

∂2Π(Pt, Yt, Ct)

∂P 2
t

∣∣∣∣
Pt=P ∗t

(P ∗t )2

(
Pt − P ∗t
P ∗t

)2

Taking the first and second order conditions:

∂Π(Pt, Yt, Ct)

∂Pt
= YtP

−η
t

[
−η
(
Pt − Ct
Pt

)
+ 1

]
∂2Π(Pt, Yt, Ct)

∂P 2
t

= −YtP−η−1
t η

[
−η
(
Pt − Ct
Pt

)
+ 1

]
− YtηP−η−2

t Ct

From the first order conditions, the optimal price is simply a constant markup over marginal

cost: Pt = η
η−1

Ct. Evaluating the first and second order conditions at the optimal price:

∂Π(Pt, Yt, Ct)

∂Pt

∣∣∣∣
P ∗t

= 0

∂2Π(Pt, Yt, Ct)

∂P 2
t

∣∣∣∣
P ∗t

= −ηYtCt
(

1

P ∗t

)2(
η

η − 1
Ct

)−η
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The maximized value of the profits:

Π(P ∗t , Yt, Ct) = Yt

(
η

η − 1

)−η
C1−η
t

(
1

η − 1

)
Therefore the term:

1

2

1

Π(P ∗t , Yt, Ct)

∂2Π(Pt, Yt, Ct)

∂P 2
t

∣∣∣∣
Pt

(P ∗t )2 =
−ηYtCt

(
η
η−1

Ct

)−η
Yt

(
η
η−1

)−η
C1−η
t

(
1

η−1

) = −η(η − 1)

Finally, the second order approximation:

Π(Pt, Yt, Ct)− Π(P ∗t , Yt, Ct)

Π(P ∗t , Yt, Ct)
= −1

2
η(η − 1)

(
Pt − P ∗t
P ∗t

)2

+ o

(
Pt − P ∗t
P ∗t

)

Where I can finally define γ ≡ −1
2
η(η−1), Π̂(pit, p̂t) = log(Π(Pt, Yt, Ct))−log(Π(P ∗t , Yt, Ct)),

pt = log(Pt) and p̂t = log(P ∗t ) as stated in equation (1).
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7.2 Appendix B: Equivalence of Mutual Information

Information Entropy is a measure about the uncertainty of a random a variable. Consider a

random variable X with finite support Ωx, which is distributed according to f ∈ ∆(Ωx). The

entropy of X, is defined by:

H(X) = −
∑
x∈Ωs

f(x)logf(x)

With the convention that 0 log 0 = 0. In Rational Inattention, the acquired amount of

information is measured by Entropy reduction. Given a collected signal st, entropy reduction

is measured by mutual information, which in the context of this dynamic model is:

I(p̂t, st|st−1) = H(p̂t|st−1)− Est [H(p̂t|st)|st−1]

Given the definition of entropy and the mutual information, and relaying on the notation∑
x =

∑
x∈Ωx

, it is possible to prove:

I(p̂t, st|st−1) = H(p̂t|st−1)− Est [H(p̂t|st)|st−1]

=
∑
s

f(s|st−1)

[∑
σ

∑
ε

f(p̂|s, st−1)log(f(p̂|s, st−1))

]
−

∑
σ

∑
ε

g(p̂t|st−1)log(g(p̂t|st−1))

=
∑
s

∑
σ

∑
ε

f(s, p̂|st−1)log(f(p̂|s, st−1))−
∑
σ

∑
ε

[∑
s

f(s, p̂|st−1)

]
log(g(p̂t|st−1))

=
∑
s

∑
σ

∑
ε

f(s, p̂|st−1)log

(
f(p̂|s, st−1)

g(p̂t|st−1)

)
=

∑
s

∑
σ

∑
ε

f(s, p̂|st−1)log

(
f(s, p̂|st−1)

g(p̂t|st−1)f(s|st−1)

)

Particularly, from the second to the third line of the equivalence I relied on the fact that

the prior distribution (marginal) is characterized as the sum of the joint probability distribu-

tion f(s, p̂|st−1) across all potential values of the signal. The final expression for the mutual

information, then coincides with what was presented in equation (3).
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7.3 Appendix C: Solution of the Dynamic RI Problem

In this section, I show how to derive the solution for the Dynamic Rational Problem introduced

in section 2.4. Given prior beliefs g(p̂|pt−1)), firms choose the conditional probability distribu-

tion of prices ft(p|p̂t) (equivalent to choose f(p, p̂t)) in each point of the simplex Ωp×Ωσ ×Ωε.

To simplify notation, I will omit the lagged price conditioning and focus on a representative

firm λi = λ. The Bellman representation of the model:

V (gt(p̂)) = max
ft(p|p̂t)

∑
σ

∑
ε

∑
p

[Π̂(pt, p̂t) + βV (gt+1(p̂))]ft(p|p̂t)gt(p̂)− λκt

Where:

κt = ft(p, p̂t)log

(
ft(p, p̂t)

gt(p̂t)ft(p)

)
= ft(p|p̂t)gt(p̂)[log(ft(p|p̂t))− log(ft(p))]

The function is also maximize subject to the constraint on the prior (6). The first order

condition of V (gt(p̂)) with respect to ft(p|p̂t):

gt(p̂)

[
Π̂(pt, p̂t) + βV (gt+1(p̂)) + β

[
∂V (gt+1(p̂))

∂gt+1(p̂)
× ∂gt+1(p̂)

∂ft(p|p̂t)

]]
−λgt(p̂)[log(ft(p|p̂t)) + 1− log(ft(p))− 1]− gt(p̂)µ(p̂t) = 0

(13)

Where:

∂gt+1(p̂)

∂ft(p|p̂t)
= h(ε)

∂mt(σ)

∂ft(p|p̂t)
(14)

The last term on the left hand side of equation (13) µ(p̂t), corresponds to the Lagrange

multiplier of the constraint attached to the prior, equation (6).

Equation (14) represents the effect of current information strategy on posterior beliefs. Prior

beliefs about the shock εt are independent of acquired information due to their i.i.d. structure.

As stressed by Steiner et al. (2017), I can treat the effects of information on future beliefs as
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fixed. This is due to the equivalence between this dynamic Rational Inattention problems and

a control problem without uncertainty about states.20

Since ∂mt(σ)/∂ft(p|p̂t) = 0, gt(p̂) ≥ 0 and λ > 0, equation (13) then becomes:

Π(pt, p̂t) + βV (gt+1(p̂t))− µ(p̂t)

λ
= log

(
f(pt|p̂t)
ft(p)

)
exp

(
Π(pt, p̂t) + βV (gt+1(p̂t))

λ

)
exp

(
−µ(p̂t)

λ

)
=
f(pt|p̂t)
ft(p)

⇒ f(pt|p̂t) = exp

(
Π(pt, p̂t) + βV (gt+1(p̂t))

λ

)
ft(p)φ(p̂t)

Where I defined:

φ(p̂t) ≡ exp

(
−µ(p̂t)

λ

)
(15)

By the restriction on the prior:

gt(p̂t) =
∑
p′

ft(p
′

t|p̂t)g(p̂t)

=
∑
p′

exp

(
Π(p

′
t, p̂t) + βV (gt+1(p̂t))

λ

)
ft(p

′

t)φ(p̂t)g(p̂t)

⇒ φ(p̂t) =
1∑

p′ exp
(

Π(p
′
t,p̂t)+βV (gt+1(p̂t))

λ

)
ft(p

′
t)

Combining this expression with (15), and adding the conditioning on lagged prices, we get

the expression for the optimal posterior distribution of prices given the unobserved target, (10):

20The intuition behind the result is the following: In the control problem, while firms have full information
about current and past history of shocks, they face a trade off: optimizing her flow utility Π̂(pt, p̂t) against
a control cost given by: Ef(pt|p̂t)[log(f(pt|p̂t)) − log(q(pt|p̂t)|zt]. The variable zt stands for the entire history
of past shocks and prices. The cost is determined by the deviation of the final action with respect to some
default action q(pt|p̂t). By relying on properties about the entropy, the paper shows an equivalence between a
control and dynamic Rational Inattention problem. Thus, the inattention problem is solved by initially solving
the control problem with observable states, characterizing the optimal conditional probability for each default
rule f(pt|p̂t), and then optimizing q. Since states are observable in the control problem, the solution ignores
the effects of information acquisition on future beliefs (i.e. treat them as a fixed) when solving the dynamic
Inattention problem.
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ft(pt|p̂t, pt−1) =
exp [(Π(pt, p̂t) + βV (gt+1(p̂t))) /λ] ft(pt|pt−1)∑

p′ exp
[(

Π(p
′
t, p̂t) + βVt+1(gt+1(p̂t))

)
/λ
]
ft(p

′
t|pt−1)

The expression for the value function, is then simply given by plugging this expression (4):

V (gt(p̂t)) = λ
∑
σ

∑
ε

∑
p

f(pt, p̂t)

(∑
p

exp

(
Π(pt, p̂t) + βV (gt+1(p̂t))

λ

)
f(pt)

)

= λE

[∑
p

exp

(
Π(pt, p̂t) + βV (gt+1(p̂t))

λ

)
f(pt)

]
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7.4 Appendix D: Information Bounds

Information frictions introduce by the RI model prevents firms to use all the available infor-

mation. Nevertheless the solution of the model, and particular its parameters, needs to be

validated in the sense that the overall process of actively seeking information must be attrac-

tive for firms given their idiosyncratic costs. A useful exercise is then to compare the outcomes

under RI with respect to its two extreme cases: Full Information and No information. Under

Full Information (FI) the cost of acquiring information is λi = 0 for all firms, while with No

Information (NI), the cost firms λi →∞. In the former case, firms perfectly track the optimal

price p∗it(FI) = p̂t, whereas in the latter the absence of information lead firms to rationally set

their optimal prices equal to the unconditional mean of the target, p∗it(NI) = E[p̂t] = 0. While

under neither of the two cases there is room for cross-sectional disagreement on price changes,

still the comparison is useful as a way to validate the chosen parameters.

These cases introduce two normative bounds for the solution of the RI model which are

relevant due to the calibrated dispersion of idiosyncratic costs. Based on firm’s objective (1),

the static profit loss under FI is ˜̂πFIt = 0, while ˜̂πNIt = γσ2
j , where j = L,H depending on the

realization of the state. In the case of RI ˜̂πRIt = γ(p∗it − p̂t)2 + λiκ
∗
it which varies according to

the stochastic choice of p∗it and hence κ∗it.
21 Intuitively the net loss under RI must be within

these two extreme cases.

0 = ˜̂πFIt < ˜̂πRIt < ˜̂πNIt = γσ2
j (16)

The difference between FI and RI is interpreted as the loss due to the information friction

while the difference with respect to NI is then the net gain from actively collecting information.

Table 4 shows that across the different values of λ and states, the net loss is always within

the bounds. According to the parameters, the total variance and the variance under the low

and high states is 0.121, 0.085 and 0.251, respectively. Them, given the value of γ I compute

the relative loss under RI over the loss with NI. As expected in all cases, the ratio is less than

one suggesting that firms are always willing to collect costly information independently of states.

21In terms of notation, I introduce “∼” to refer to differentiate the net profit loss function, i.e. the static loss
after incorporating the information costs, from the gross profit loss.
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Table 4: Information Bounds

All Low Volatility High Volatility
Net Profit Loss RI RI/NI RI RI/NI RI RI/NI

λ1 0.010 0.086 0.010 0.122 0.010 0.041
λ2 0.022 0.181 0.022 0.258 0.022 0.087
λ3 0.028 0.230 0.028 0.328 0.028 0.111
λ4 0.032 0.263 0.032 0.374 0.032 0.127
λ5 0.035 0.290 0.035 0.412 0.035 0.140
λ6 0.038 0.313 0.038 0.446 0.038 0.152
λ7 0.040 0.335 0.040 0.476 0.041 0.162
λ8 0.043 0.357 0.043 0.509 0.043 0.173
λ9 0.046 0.377 0.046 0.537 0.046 0.183
λ10 0.048 0.393 0.048 0.560 0.048 0.190
λ11 0.050 0.413 0.050 0.588 0.050 0.200
λ12 0.053 0.436 0.053 0.620 0.053 0.212
λ13 0.056 0.460 0.056 0.655 0.056 0.223
λ14 0.060 0.495 0.060 0.706 0.060 0.239
λ15 0.067 0.550 0.066 0.783 0.067 0.266

7.5 Appendix E: Evolution of alternative models

In this section, I describe the evolution of the three alternative models for the evolution of price

dispersion, the frequency of price changes and the percentage of firms updating their attention.

According to the upper figure, even under homogeneous costs there is persistent dispersion of

prices. This is because, despite sharing the same cost, the optimal price is set by drawing

from posterior beliefs fit(pt|p̂t, pit−1), according to equation (10). Interestingly, under both the

baseline scenario and homogeneous costs the evidence supports the presence of asymmetric

reactions with respect to a change of state, which is a feature of the dynamic setting.

By looking at the combine evolution of dispersion and the frequency of price changes, it

may seems that these two alternative specifications are able to capture the positive correlation

suggested by data. However, in terms of their levels, the magnitude by which dispersion rise

does not seems particularly meaningful to actually generate the positive correlation. Finally, the

lower panel shows the main implication of the static setting. Under this scenario, firms noticed

the change of state with full precision, which leads all of them to adjust their total attention

immediately. This is the main difference with a dynamic setting. Imperfect information about

the states, makes the attention reaction sluggish, where the rate by which firms update their

attention is disciplined by their own information costs.
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Figure 8: Aggregate Evolution
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Notes: In all the figures, the vertical dotted black lines represent the high volatility episode. The top figure

presents the aggregate inter-quantile range evolution of price changes. The middle figure shows the evolution of

the frequency of price changes while the bottom figure shows the percentage of firms updating their information

capacity, κit. Each figure presents three cases. The black line represents the baseline model, the grey line

corresponds to the static setting and the green line accounts for the homogeneous costs specification.
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