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Abstract

We analytically characterize a sunspot equilibrium in a model where exogenous changes in

agents’ confidence give rise to occasional liquidity trap episodes. The key elements of the model

are price rigidities, a discretionary policymaker and a lower bound on nominal interest rates.

Episodes of low confidence—featuring a binding lower bound and subdued economy activity—

have to be sufficiently rare and persistent for the sunspot equilibrium to exist. During episodes

of high confidence—featuring a policy rate above the lower bound—the possibility of a decline in

confidence gives rise to a policy trade-off between output and inflation stabilization. The setup

is used to revisit the desirability of three institutional configurations known to improve welfare

in models of fundamental-driven liquidity trap events: inflation conservatism, a positive infla-

tion target and fiscal activism. Expectations-driven liquidity traps render policy design more

complicated. We show that the welfare-maximizing weight on inflation relative to output stabi-

lization in the policymaker’s objective function can be smaller or larger than society’s weight.

Likewise, the optimal inflation target can be negative or positive. Allowing the policymaker to

use government spending as an additional policy tool is welfare-reducing, but the appointment

of a sufficiently fiscally-activist policymaker eliminates the sunspot equilibrium.
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1 Introduction

In recent years, monetary policy in many industrialized countries has been constrained by a binding

lower bound on nominal interest rates. While central banks during these prolonged episodes invoked

other policy instruments such as asset purchases to compensate for the unavailability of further

interest rate cuts, inflation rates typically remained stubbornly below target. In light of this rather

disappointing state of affairs, some central banks have recently decided to review not only their

toolkit but also their policy frameworks (see e.g. Federal Reserve Board of Governors, 2018; Wilkins,

2018; Clarida, 2019). In so doing, central banks can resort to a by now rich literature on the design

of monetary policy in the presence of a lower bound on nominal interest rates. Most of these

studies base their analysis on models where liquidity trap events are caused by a change in the

fundamentals of the economy. Liquidity trap episodes can, however, also arise as a consequence of

a decline in agents’ confidence that is unrelated to fundamentals, as was first shown by Benhabib

et al. (2001). These so-called expectations-driven liquidity traps have received much less attention

in the literature.

The aim of this paper is to enhance our understanding of expectations-driven liquidity traps and

their implications for the design of monetary and fiscal policy frameworks. In particular, we revisit

the desirability of three institutional configurations that have been shown to improve allocations

and welfare in models of fundamental-driven liquidity trap events: inflation conservatism, a positive

inflation target and fiscal activism. The analysis is based on a tractable macroeconomic model that

can be solved in closed form.1 The main model ingredients are sticky prices, a two-state confidence

or ‘sunspot’ shock and a discretionary policymaker who sets the one-period nominal interest rate

subject to a lower bound, and, in the fiscal policy extension, the level of government consumption.

The policymaker’s objective function is designed by society and taken as given by the policymaker.

Throughout the analysis, results obtained for the benchmark setup with the sunspot shock are

compared to those for an alternative version of the model where the sunspot shock is replaced with

a two-state fundamental shock that affects the economy’s natural real rate of interest.

We find that a sunspot equilibrium where the lower bound constraint is binding when agents’

confidence is low and slack when confidence is high exists if and only if the low-confidence state

is sufficiently persistent—liquidity trap episodes are long-lived—and the probability to move from

the high to the low-confidence state is sufficiently small—liquidity trap episodes are rare events.

This property of the sunspot equilibrium seems to be consistent with the highly persistent liquidity

trap episodes recently observed in Japan, the United States and the euro area, with policy rates

staying at their lower bounds for several years. The version of the model with the fundamental

shock, instead, is unable to replicate such long-lived lower bound episodes.

In the sunspot equilibrium, when confidence is low and the lower bound is binding, inflation

and the output gap are both strictly negative. Intuitively, the central bank responds to agents pes-

simistic expectations by lowering the policy rate to its lower bound at which point these pessimistic

1More specifically, the model can be solved in closed form under the three considered institutional configurations.
We deliberately leave out policy regimes that prevent a closed-form solution.
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expectations become self-fulfilling. However, even when confidence is high and the policy rate is

above its lower bound, the risk of a future decline in confidence induces forward-looking households

and firms to reduce desired consumption and prices. These private sector incentives give rise to a

policy trade-off between inflation and output gap stabilization. In equilibrium, inflation is negative

and the output gap is strictly positive in the high-confidence state.

Can allocations and welfare be improved by designing a central bank objective function that

differs from society’s objective function? We first consider the desirability of inflation conservatism,

that is, the assignment of a central bank objective function that puts more weight on inflation

stabilization relative to output gap stabilization than society as a whole does. Inflation conservatism

has been shown to be welfare-improving in the model with fundamental-driven liquidity traps by

mitigating the inflation shortfall both at and away from the lower bound (Nakata and Schmidt,

2018). In our model with expectations-driven liquidity traps, inflation conservatism also raises

inflation when the lower bound constraint is slack since, all else equal, a central bank that is more

concerned with inflation stabilization is more willing to tolerate a positive output gap to achieve its

inflation objective. But at the same time inflation conservatism exacerbates the decline in inflation

and the output gap when confidence is low and the nominal interest rate bound is binding. These

opposing effects of inflation conservatism on low-state and high-state stabilization outcomes render

the design of the central bank objective function in the sunspot equilibrium more complicated than

in models of fundamental-driven liquidity trap episodes. In particular, the welfare-maximizing

relative weight on inflation stabilization in the central bank objective function can be lower or

higher than society’s weight, depending on the model’s structural parameters and the transition

probabilities of the sunspot shock. Strict inflation conservatism, that is, a central bank objective

function that is only concerned with inflation stabilization, is, however, never optimal in the sunspot

equilibrium.2

Next, we consider the desirability of assigning a non-zero inflation target to the central bank. In

models of fundamental-driven liquidity trap episodes, the optimal inflation target is strictly positive

(Coibion et al., 2012; Nakata and Schmidt, 2018). Instead, in the sunspot equilibrium, the sign

of the optimal inflation target is ambiguous, for reasons similar to those mentioned above in the

context of inflation conservatism. Indeed, in our model, any allocation that is attainable under

an inflation-conservative discretionary policymaker is also attainable by means of an appropriately

designed central bank inflation target. Quantitatively, we find that if the optimal inflation target

is strictly positive, it stays close to zero. In particular, a strictly positive inflation rate in the

high-confidence state—which is attainable in case of a sufficiently high inflation target—is never a

feature of the sunspot equilibrium under the optimal inflation target.

The final part of the paper extends the analysis to fiscal policy. In models of fundamental-

driven liquidity trap events, allowing the discretionary policymaker to use government spending

as an additional stabilization tool is welfare-improving (Eggertsson, 2006; Schmidt, 2013; Nakata,

2016; Werning, 2011). Moreover, because of a time inconsistency problem, welfare can be increased

2Strict inflation conservatism is optimal in our model with the two-state natural real rate shock.
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further by assigning an objective function to the monetary-fiscal policymaker that puts less rela-

tive weight on the stabilization of government expenditures than society’s objective function does

(Schmidt, 2017). Such a fiscally-activist policymaker adjusts government spending more elastically

in response to changes in economic conditions. In the sunspot equilibrium of our model, instead,

providing the policymaker with the fiscal stabilization tool is welfare-reducing. In the sunspot

equilibrium, as in the fundamental equilibrium, the discretionary policymaker raises government

spending when the economy moves from the high state to the low state and keeps government

spending at the elevated level for as long as the economy stays in the low state. In so doing,

the discretionary policymaker fails to internalize the detrimental effects that the systematic fiscal

policy response has on previous period’s private sector expectations in the sunspot equilibrium.

In equilibrium, the increase in government spending reduces inflation and the output gap in the

low-confidence state and exacerbates the stabilization trade-off in the high-confidence state.

The implications for the design of fiscal policy then seem straightforward. Conditional on the

economy being in the sunspot equilibrium, it is optimal for society to put infinitely large weight on

government spending stabilization in the monetary-fiscal policymaker’s objective function, thereby

removing any incentive for the policymaker to use government spending as a stabilization tool.

However, we also show that the appointment of a sufficiently fiscally-activist policymaker—i.e. one

who puts a sufficiently small relative weight on government spending stabilization—eliminates the

sunspot equilibrium in the model with the sunspot shock. In this case, the prevailing equilibrium

is one where the sunspot shock has no effect on agents decisions and the economy is perfectly

stabilized.

Our paper is related to several strands of the literature on the lower bound on nominal interest

rates. Studies on optimal monetary policy in models of fundamentral-driven liquidity traps include

Eggertsson and Woodford (2003), Jung et al. (2005), Adam and Billi (2006, 2007), and Nakov

(2008). Optimal fiscal policy is analyzed by e.g. Eggertsson and Woodford (2006), Eggertsson

(2006), Werning (2011) Schmidt (2013), Nakata (2016) and Bouakez et al. (2016), among others.

Billi (2017), Schmidt (2017), Nakata and Schmidt (2018, 2019) and Mertens and Williams (2019)

study alternative monetary and fiscal policy delegation schemes aimed at improving the equilibrium

under discretionary policy, some of which we revisit in this paper.

This paper builds on the seminal work by Benhabib et al. (2001) who showed that accounting

for the zero lower bound gives rise to two deterministic steady states in a model where monetary

policy is governed by an interest-rate feedback rule. Besides the conventional steady state where

inflation is at target and the policy rate is strictly positive, there exists a second steady state

where the lower bound constraint is binding and inflation is below target. Furthermore, there

exist infinitely many perfect-foresight equilibria that converge to the second unintended steady

state. Other papers that consider permanent expectations-driven liquidity trap equilibria include

Hursey and Wolman (2010), Armenter (2018), and Nakata and Schmidt (2018). Armenter (2018)

and Nakata and Schmidt (2018) show that expectations-driven liquidity traps can also arise under

optimal discretionary policy, and Armenter (2018) furthermore shows that price-level and nominal-
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GDP targeting regimes also fail to rule out expectations-driven traps.

Temporary expectations-driven liquidity trap episodes are studied in Mertens and Ravn (2014),

Schmitt-Grohé and Uribe (2017), Aruoba et al. (2018), Jarociński and Maćkowiak (2018), Bilbiie

(2018), and Coyle and Nakata (2018). Mertens and Ravn (2014) show that the size of govern-

ment spending multipliers at the lower bound critically depends on whether the economy is in a

fundamental-driven or an expectations-driven liquidity trap. They use a two-state Markov shock

structure similar to the one we use in this paper but assume that the high-confidence state is an

absorbing state. Schmitt-Grohé and Uribe (2017) show that a model with downward nominal wage

rigidities and a sunspot shock can mimic the economic dynamics of a recessionary lower bound

episode that is followed by a jobless recovery. Aruoba et al. (2018) conduct a model-based empir-

ical assessment to shed light on the type of liquidity trap events recently experienced by the US

economy and the Japanese economy and conclude that Japan transitioned in the late 1990s to an

expectations-driven liquidity trap state. Jarociński and Maćkowiak (2018) use a sticky price model

with a sunspot shock to conduct counterfactual simulations of the euro area economic downturn

in 2008-2015. Coyle and Nakata (2018) consider a model where the economy can either be in a

fundamental-driven or an expectations-driven liquidity trap and show that the optimal inflation

target is lower than in the case where lower bound events arise solely as a result of fundamental

shocks.

Our paper is closely related to Bilbiie (2018). Bilbiie uses a tractable New Keynesian model to

analytically characterize key properties of expectations-driven liquidity traps and contrasts them

with fundamental-driven traps. However, several differences underline the complementary nature

of the two studies. First, in Bilbiie’s model, expectations-driven liquidity traps are non-recurring

events, i.e. once the economy is out of the trap it will never hit the nominal interest rate bound

again. In our model, the possibility that confidence might decline (again) in the future affects

agents’ behavior even when the economy is in the high-confidence state and the lower bound con-

straint is slack. The two studies also differ in their specification of monetary policy. In Bilbiie’s

model, monetary policy is governed by an interest-rate feedback rule whereas we consider a discre-

tionary central bank that optimizes an assigned objective function. Most importantly, Bilbiie (2018)

analyzes the effects of exogenous policy interventions such as an exogenous change in the policy

rate path or in government spending whereas we focus on the design of the systematic components

of monetary and fiscal policy that give rise to endogenous changes in the policy instruments.

Finally, our paper also makes contact with studies on how to avoid expectations-driven liquidity

traps, including Benhabib et al. (2002), Sugo and Ueda (2008), Schmitt-Grohé and Uribe (2014),

Schmidt (2016) and Roulleau-Pasdeloup (2019).

The remainder of the paper is organized as follows. Section 2 presents the model, describing

the private sector behavioral constraints, monetary policy and the shock structure, and defines the

equilibria of interest. Section 3 presents results on equilibrium existence, stabilization outcomes

and comparative statics. Section 4 assesses the desirability of inflation conservatism in the sunspot

equilibrium and Section 5 the desirability of a non-zero central bank inflation target. Section 6
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extends the model by introducing government consumption and explores the implications of fiscal

activism for equilibrium existence, allocations, and welfare. Section 7 concludes.

2 Model

We use a tractable New Keynesian infinite-horizon model that can be solved in closed form. The

economy is inhabited by identical households who consume and work, goods-producing firms that

act under monopolistic competition and are subject to price rigidities, and a government. More

detailed descriptions of the model can be found in Woodford (2003) and Gaĺı (2015). Time is

discrete and indexed by t.

2.1 Private sector behavior and welfare

Aggregate private sector behavior is described by a Phillips curve and a consumption Euler equation

πt = κyt + βEtπt+1 (1)

yt = Etyt+1 − σ (it − Etπt+1 − rnt ) (2)

The private sector behavioral constraints have been (semi) log-linearized around the intended

zero-inflation steady state. πt is the inflation rate between periods t − 1 and t, yt denotes the

output gap, it is the level of the riskless nominal interest rate between periods t and t + 1, rnt is

the exogenous natural real rate of interest, and Et is the rational expectations operator conditional

on information available in period t. The parameters are defined as follows: β ∈ (0, 1) is the

households’ subjective discount factor, σ > 0 is the inverse of the elasticity of the marginal utility

of consumption with respect to output, and κ represents the slope of the Phillips curve.3

Households’ welfare at time t is given by the expected discounted sum of current and future

utility flows. A second-order approximation to household preferences leads to

Vt = −1

2
Et

∞∑
j=0

βj
[
π2
t+j + λ̄y2

t+j

]
, (3)

where λ̄ = κ/θ.4

2.2 Monetary policy

At the beginning of time, society delegates monetary policy to a central bank. The central bank

does not have a commitment technology, that is, it acts under discretion. The monetary policy

3κ is itself a function of several structural parameters of the economy: κ = (1−α)(1−αβ)
α(1+ηθ)

(σ−1 + η), where α ∈ (0, 1)
denotes the share of firms that cannot reoptimize their price in a given period, η > 0 is the inverse of the labor-supply
elasticity, and θ > 1 denotes the price elasticity of demand for differentiated goods.

4See Woodford (2003). We assume that the steady state distortions arising from monopolistic competition are
offset by a wage subsidy.
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objective is given by

V CB
t = −1

2
Et

∞∑
j=0

βj
[
(πt+j − π∗)2 + λy2

t+j

]
, (4)

where λ ≥ 0 and π∗ are policy parameters to be set by society when designing the central bank’s

objective function. For λ = λ̄ and π∗ = 0, the central bank’s objective function coincides with

society’s objective function (3).

The policy problem of a generic central bank is as follows. Each period t, she chooses the

inflation rate, the output gap, and the nominal interest rate to maximize its objective function (4)

subject to the behavioral constraints of the private sector (1)–(2), and the lower bound constraint

it ≥ 0, with the policy functions at time t+ 1 taken as given.

In this case, interest rate policy is governed by the following targeting rule

[κ(πt − π∗) + λyt] it = 0, (5)

where κ(πt − π∗) + λyt = 0 whenever it > 0 and κ(πt − π∗) + λyt < 0 when the lower bound

constraint is binding, it = 0. In words, each period the central bank aims to stabilize a weighted

sum of current period’s inflation rate (in deviation from target) and the output gap.

2.3 Benchmark setup: Sunspot shock

For the benchmark setup, we assume that there is no uncertainty regarding the economy’s funda-

mentals. Specifically, rnt = rn = 1/β− 1 for all t. However, agents expectations may be affected by

a non-fundamental sunspot or ‘confidence’ shock ξt. The sunspot shock follows a two-state Markov

process, ξt ∈ (ξL, ξH). We refer to state ξL as the low-confidence state and to state ξH as the

high-confidence state. The transition probabilities are given by

Prob (ξt+1 = ξH |ξt = ξH) = pH (6)

Prob (ξt+1 = ξL|ξt = ξL) = pL (7)

In words, pH ∈ (0, 1] is the probability of being in the high-confidence state in period t+1 conditional

on being in the high-confidence state in period t, and can be interpreted as the persistence of high

confidence. Note that while we allow the high-confidence state to be an absorbing state we do not

restrict our analysis to this special case. pL ∈ (0, 1) is the probability of being in the low-confidence

state in period t + 1 when the economy is in the low-confidence state in period t, and can be

interpreted as the persistence of low confidence.5

5Mertens and Ravn (2014), Schmidt (2016), Aruoba et al. (2018) and Bilbiie (2018) also consider a sunspot shock
that follows a two-state Markov process. However, Mertens and Ravn (2014), Schmidt (2016) and Bilbiie (2018)
assume that the high-confidence state is an absorbing state, that is, pH = 1. Aruoba et al. (2018) allow for recurring
declines in confidence and assume that conditional on being in the high-confidence state agents attach a 1% probability
to the possibility of ending up in the low-confidence state in the next period. Formally, in the context of our setup
they impose pH = 0.99.
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Let xs, s ∈ {L,H} be the equilibrium value of some variable x in state ξs. Sunspots matter if

there is an equilibrium in which {πL, yL, iL, VL} 6= {πH , yH , iH , VH}. We are interested in a sunspot

equilibrium where the economy is subject to occasional and temporary liquidity trap episodes. We

associate the occurrence of these liquidity trap events with the low-confidence state.

Definition 1 The sunspot equilibrium in the model with the sunspot shock is given by a vector

{yH , πH , iH , yL, πL, iL} that solves the following system of linear equations

yH = [pHyH + (1− pH)yL] + σ [pHπH + (1− pH)πL − iH + rn] (8)

πH = κyH + β [pHπH + (1− pH)πL] (9)

0 = κ(πH − π∗) + λyH (10)

yL = [(1− pL)yH + pLyL] + σ [(1− pL)πH + pLπL − iL + rn] (11)

πL = κyL + β [(1− pL)πH + pLπL] (12)

iL = 0, (13)

and satisfies the following two inequality constraints

iH > 0 (14)

κ(πH − π∗) + λyH < 0. (15)

2.4 Alternative setup: Fundamental shock

Throughout the paper, we contrast results for the benchmark model—an economy that is subject

to a sunspot shock—with those for an economy that is subject to a fundamental shock instead of

a sunspot shock but is otherwise identical to the benchmark economy. In this alternative model,

the natural real rate is assumed to be stochastic.

To keep the model setup as close as possible to the one with the sunspot shock, rnt is assumed to

follow a two-state Markov process. In the high-fundamental state, the natural real rate is strictly

positive rnH = rn > 0, and in the low-fundamental state it is strictly negative rnL < 0. The transition

probabilities for the natural real rate shock are given by

Prob
(
rnt+1 = rnH |rnt = rnH

)
= pfH (16)

Prob
(
rnt+1 = rnL|rnt = rnL

)
= pfL, (17)

and are distinguished from the transition probabilities of the sunspot shock via the superscript f .

The fundamental equilibrium in the model with the natural real rate shock is defined as follows.

Definition 2 The fundamental equilibrium in the model with the fundamental shock is given
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by a vector {yH , πH , iH , yL, πL, iL} that solves

yH =
[
pfHyH + (1− pfH)yL

]
+ σ

[
pfHπH + (1− pfH)πL − iH + rn

]
(18)

πH = κyH + β
[
pfHπH + (1− pfH)πL

]
(19)

yL =
[
(1− pfL)yH + pfLyL

]
+ σ

[
(1− pfL)πH + pfLπL − iL + rnL

]
(20)

πL = κyL + β
[
(1− pfL)πH + pfLπL

]
(21)

as well as (10) and (13), and satisfies inequality constraints (14) and (15).

This fundamental equilibrium has been analyzed in detail in Nakata and Schmidt (2018).6 To

keep the exposition parsimonious, we will refer to this companion paper for the proofs related to

the fundamental equilibrium whenever applicable.

3 Basic properties of the sunspot equilibrium

This section presents some basic properties of the sunspot equilibrium and contrasts them with

those of the fundamental equilibrium. In particular, we analyze the conditions for equilibrium

existence, allocations/prices, and how they are affected by some of the key non-policy parameters.

3.1 Equilibrium existence

The following proposition establishes a necessary and sufficient condition for existence of the sunspot

equilibrium.

Proposition 1 The sunspot equilibrium exists if and only if

pL − (1− pH)− 1− pL + 1− pH
κσ

(1− βpL + β(1− pH)) > 0, (22)

and

π∗ > −κ
2 + λ(1− β)

κ2
rn. (23)

Proof: See Appendix A.

Three observations are in order. First, for the sunspot equilibrium to exist, the two confidence

states have to be sufficiently persistent. Second, prices have to be sufficiently flexible, i.e. κ has to

be sufficiently large. Third, the central bank’s inflation target must be higher than some strictly

6Nakata and Schmidt (2018) show that there exists a second equilibrium where the economy is stuck in a permanent
liquidity trap. While not his focus, Nakata (2018) provides a numerical analysis of this equilibrium in the Appendix.
Here, we do not consider this equilibrium.

9



negative lower bound. Conditional on the inflation target not being too low, equilibrium existence

does not depend on the policy parameters λ and π∗.

These conditions for existence of the sunspot equilibrium differ quite a bit from the conditions for

existence of the fundamental equilibrium. In particular, for the fundamental equilibrium to exist,

the low-fundamental state must not be too persistent (see Nakata and Schmidt, 2018). Hence,

the fundamental equilibrium stipulates an upper bound on the average duration of liquidity traps

whereas the sunspot equilibrium stipulates a lower bound.

Figure 1 provides a numerical example, plotting the region of existence for the sunspot equilib-

rium in the (pH , pL) space (black area), and the region of existence for the fundamental equilibrium

in the (pfH , p
f
L) space (gray area).7 One period corresponds to one quarter. The values used for the

model parameters are listed in Table 1 and follow those in Eggertsson and Woodford (2003).8

Table 1: Parameter values for the numerical example

Parameter Value Economic interpretation

β 0.9975 Subjective discount factor
σ 0.5 Intertemporal elasticity of substitution in consumption
η 0.47 Inverse labor supply elasticity
θ 10 Price elasticity of demand
α 0.8106 Share of firms per period keeping prices unchanged
λ λ̄ Policy parameter: Relative weight on output term
π∗ 0 Policy parameter: Inflation target
rnL -0.005 Low-state natural real rate in model with fundamental shock

Note: This parameterization implies rn = 0.0025, κ = 0.0194, λ̄ = 0.0019.

3.2 Allocations and prices

The allocations and prices in the sunspot equilibrium can be solved for in closed form. For now, we

assume that the central bank has the same objective function as society as a whole. The signs of

inflation and the output gap in the two states of confidence are then unambiguously determined.

Proposition 2 Suppose λ = λ̄ and π∗ = 0. In the sunspot equilibrium, πL < 0, yL < 0, πH ≤ 0,

yH ≥ 0. When pH < 1, then πH < 0, yH > 0.

Proof: See Appendix A

When confidence is low, agents expect persistently low future income, and therefore increase

desired saving at the expense of lower desired consumption. Due to the presence of price rigidities,

prices do not fully adjust immediately and output falls. The central bank lowers the policy rate

to equate desired saving to zero, but if agents are sufficiently pessimistic, the lower bound on the

7In case of the fundamental equilibrium, the condition for equilibrium existence depends on the value of the natural
real rate in the low-fundamental state, rnL. The region of existence is shrinking in the absolute value of rnL.

8We choose a higher value for the subjective discount factor β than Eggertsson and Woodford (2003), consistent
with recent empirical evidence indicating a decline in the long-run natural real rate of interest.

10



Figure 1: Existence regions for sunspot equilibrium and fundamental equilibrium
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policy rate becomes binding. At the lower bound, to equate desired saving to zero, output has to

fall, validating agents’ pessimistic expectations. The lower bound is binding, and inflation and the

output gap both settle below target.

When confidence is high, the policy rate is strictly positive but if pH < 1 the risk of a future

decline in confidence creates a monetary policy trade-off between inflation and output gap stabi-

lization. Specifically, the possibility that confidence might fall in the future while the price set by a

firm reoptimizing today is still in place provides an incentive for forward-looking firms to set a lower

price than they would in the absence of any risk of a future drop in confidence. To counteract these

deflationary forces, the central bank allows for a positive output gap, that is, it sets the policy rate

in the high-confidence state such that the ex-ante real interest rate is below the constant natural

real rate. In equilibrium, the high-confidence output gap is thus positive and inflation is below

target.

The signs of output and inflation in the fundamental equilibrium are identical to those in the

sunspot equilibrium. Output and inflation are negative in the low-fundamental state, and output

(inflation) is positive (negative) in the high-fundamental state (see Nakata and Schmidt, 2018).

However, in the fundamental equilibrium, it is the temporarily negative natural real rate of interest

in the low-fundamental state that leads to the decline in output and inflation in the low state.

In order to better understand low-state outcomes in the model with the sunspot shock and in

the model with the fundamental shock, and how the models’ parameters affect them, we make us

of aggregate demand (AD) and aggregate supply (AS) curves. The low-state AD curve is the set

of pairs {πL, yL} consistent with Euler equation (2) where the policy rate set in line with target

criterion (5), and the low-state AS curve is the set of pairs {πL, yL} consistent with Phillips curve
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Figure 2: Aggregate demand and aggregate supply in the low state
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Note: In the left panel, S marks the sunspot equilibrium and NS the no-sunspot equilibrium. In the right panel, F

marks the fundamental equilibrium. Inflation is expressed in annualized terms.

(1). Specifically, for the sunspot-shock model the two curves are given by

AD-sunspot: yL = min

[(
yH + σπH +

σ

1− pL
rn
)

+
σpL

1− pL
πL,

κ

λ
(π∗ − πL)

]
(24)

AS-sunspot: yL = −β(1− pL)

κ
πH +

1− βpL
κ

πL, (25)

where in each equation we distinguish between terms that are multiplied by πL—the slope coefficient—

and the other terms—the intercept. For the fundamental-shock model, the two curves are given

by

AD-fundamental: yL = min

[(
yH + σπH +

σ

1− pfL
rnL

)
+

σpfL

1− pfL
πL,

κ

λ
(π∗ − πL)

]
(26)

AS-fundamental: yL = −
β(1− pfL)

κ
πH +

1− βpfL
κ

πL. (27)

Figure 2 plots these AD-AS curves for the model with the sunspot shock (left panel) and for

the model with the fundamental shock (right panel), assuming that the high state in both models

is an absorbing state. The parameters capturing the persistence of the low state are calibrated

such that the sunspot equilibrium exists in the model with the sunspot shock and the fundamental

equilibrium exists in the model with the fundamental shock.9 For πH , yH = 0, the intercept terms

in the AS curves are zero, whereas the intercept terms in the AD curves are positive (sunspot-shock

model) and negative (fundamental-shock model), respectively.

9Specifically, we set pL = 0.9375 in the model with the sunspot shock, implying an average duration of lower
bound episodes of 4 years. In the model with the fundamental shock, we set pfL = 0.85, implying an average duration
of lower bound episodes of 1 1/2 years. The other parameter values are summarized in Table 1.
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The low-state AD-AS curves in the two models have several common features. First, due to

the lower bound constraint, the AD curve has a kink. To the left of the kink, the lower bound

constraint is binding and to the right of the kink the lower bound constraint is slack. Second, the

AD curve is upward-sloping to the left of the kink, and downward-sloping to the right of the kink.

Third, the AS curve is monotonically upward-sloping and goes through the origin.

In the model with the sunspot shock, the AD curve is steeper than the AS curve. This is a

necessary—and in case of π∗ = 0 sufficient—condition for existence of the sunspot equilibrium.10

Otherwise there would be no intersection of the AD and AS curves to the left of the kink. Consistent

with Proposition 2, when confidence is low, output and inflation are strictly negative in the sunspot

equilibrium as reflected by the intersection point S. Besides the sunspot equilibrium, there is a

second equilibrium—represented by intersection point NS—where the lower bound constraint on

the policy rate is not binding and low-state output and inflation are at target. In this ‘no-sunspot’

equilibrium, the sunspot shock does not affect agents expectations and decisions, i.e. sunspots do

not matter.

In the model with the fundamental shock, the AD curve is flatter than the AS curve, which is

a necessary condition for the fundamental equilibrium to exist. In the fundamental equilibrium,

marked by intersection point F in the right panel, low-state output and inflation are negative, again

in line with analytical results.

3.3 Comparative statics

This subsection explains how allocations and prices in the sunspot equilibrium depend on the

persistence of the two confidence states and on the degree of price flexibility.

3.3.1 Persistence of the low state

We begin with the effects of a marginal increase in the persistence of the low state.

Proposition 3 Suppose λ = λ̄ and π∗ = 0. In the sunspot equilibrium, ∂πL
∂pL

> 0, ∂yL
∂pL

> 0, ∂πH
∂pL
≥ 0,

∂yH
∂pL
≤ 0. When pH < 1, then ∂πH

∂pL
> 0, ∂yH

∂pL
< 0.

Proof: See Appendix A.

The first part of the proposition states that the more persistent the low-confidence state, the

smaller the target shortfall of inflation and output in that state. The second part states that

the more persistent the low-confidence state, the smaller the deviation of high-state output and

high-state inflation from target.

The left panel of Figure 3 depicts how an increase in the persistence of the low-confidence state

affects the low-state AD and AS curves (24)–(25) of the sunspot-shock model, assuming pH = 1.

The baseline curves are represented by the two solid lines, and the new curves are represented by

10See the condition for existence of the sunspot equilibrium (22) with pH = 1.
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Figure 3: The effect of an increase in the persistence of the low state
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(b) Model with fundamental shock

Note: Solid lines: pL = 0.9375 (pfL = 0.85); dashed lines: pL = 0.98 (pfL = 0.88). In the left panel, S marks the

sunspot equilibrium in the baseline and S′ marks the sunspot equilibrium in the case of a higher pL. NS marks the

no-sunspot equilibrium. In the right panel, F marks the fundamental equilibrium in the baseline and F ′ in the case

of a higher pfL. Inflation is expressed in annualized terms.

the two dashed lines. An increase in the persistence of the low state leads to a flattening of the

AS curve. Intuitively, when firms expect the low-confidence state to persist for longer, they adjust

prices more elastically to a change in low-state demand conditions. Since prices are sticky, the

inflation rate adjusts more elastically as well. The AD curve shifts upward—the intercept term

increases—and becomes steeper to the left of the kink. The steepening of the AD curve reflects

the fact that households adjust their desired consumption more elastically to a change in the rate

of inflation when that change is assumed to persist for longer. To understand the increase in the

intercept term of the AD curve, note that so long as the lower bound is binding, the nominal

interest rate is below the natural real rate. An increase in the persistence of the low-confidence

state implies that this negative gap between the actual nominal rate and the natural real rate—

which abstracts from inflation—is expected to persist for longer. All else equal, this pushes up

desired consumption. In the low state of the sunspot equilibrium, inflation is, however, lower than

the negative of the natural real rate and hence there is a positive gap between the ex-ante real

interest rate and the natural real rate. At a given equilibrium rate of inflation, an increase in the

persistence of the low state will thus always result in a decline in households’ desired consumption.

Together, the shifts in the AD and AS curves imply that at the inflation rate consistent with the

sunspot equilibrium in the baseline, marked by point S, there is now excess supply. Since the AD

curve is steeper than the AS curve, excess supply is a declining function of the inflation rate as

long as the lower bound is binding.11 Hence, to restore equilibrium, inflation (and output) have to

increase. The new intersection point S′ lies to the north-east of the baseline intersection point S.

The analysis of the AD and AS curves also makes clear why the sunspot equilibrium does not

11This property of models of expectations-driven liquidity traps is also emphasized by Mertens and Ravn (2014).
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exist when pL is sufficiently low. When pL is sufficiently low, the AD curve is flatter than the

AS curve, and the only intersection point is the one associated with the no-sunspot equilibrium,

denoted NS.

Having understood why low-state output and inflation are increasing in pL, the effects of an

increase in pL on high-state output and inflation in the more general case of pH < 1 are rela-

tively straightforward to understand. Since the target criterion is satisfied in the high-confidence

state what matters for high-state output and inflation is how conditional inflation expectations are

affected by the change in pL. An increase in pL raises low-state inflation and thereby mitigates

the downward bias in conditional inflation expectations in the high-confidence state. Better an-

chored inflation expectations improve the output-inflation stabilization trade-off in the high state.

In equilibrium, high-state output is decreasing and high-state inflation is increasing in pL.

In the fundamental equilibrium, instead, an increase in the persistence of the low-fundamentals

state pfL makes the downturn in low-state output and inflation more severe, and deteriorates the

stabilization trade-off in the high-fundamentals state. See Appendix B. The right panel of Figure

3 illustrates graphically how the low-state AD and AS curves (26)–(27) in the fundamental-shock

model are affected by an increase in pfL. As before, for the graphical analysis pfH = 1. Like in

the sunspot-shock model, an increase in the persistence of the low state flattens the AS curve and

steepens the AD curve. Unlike in the sunspot-shock model, the AD curve shifts downwards to the

left of the kink, since the gap between the nominal interest rate and the natural real rate at the

lower bound is positive in the low-fundamentals state. In the model with the fundamental shock

the AD curve has to be flatter than the AS curve for the fundamental equilibrium to exist, and

hence the intersection point in case of higher persistence of the low-fundamental state F ′ lies to

the south-west of the intersection point for the baseline F . For sufficiently high pfL the AD curve

becomes steeper than the AS curve and the fundamental equilibrium fails to exist.

3.3.2 Persistence of the high state

The next proposition sheds light on the effects of a change in the persistence of the high state on

allocations and prices.

Proposition 4 Suppose λ = λ̄ and π∗ = 0. In the sunspot equilibrium, ∂πH
∂pH

> 0, ∂yH
∂pH

< 0.

Moreover, ∂πL
∂pH

> 0 if and only if pL > 1− κ2−κσλ
βλ , and ∂yL

∂pH
> 0 if and only if pL <

κ2−κσλ
βκ2 .

Proof: See Appendix A.

Consider, first, output and inflation in the high-confidence state. The lower the conditional

probability of a future decline in confidence, the more benign is the trade-off between inflation

and output gap stabilization in the high-confidence state for given low-confidence state outcomes.

This partial equilibrium effect turns out to determine the signs of the overall effects on high-state

outcomes, i.e. high-state output is decreasing and high-state inflation is increasing in pH .

Instead, the effects of an increase in pH on stabilization outcomes in the low-confidence state

are ambiguous. The left panel of Figure 4 shows how the low-confidence-state AD and AS curves
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Figure 4: The effect of an increase in the persistence of the high state
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(b) Model with fundamental shock

Note: Solid lines: pH , p
f
H = 0.98; dashed lines: pH , p

f
H = 0.995. In the left panel, S marks the sunspot equilibrium

in the baseline and S′ marks the sunspot equilibrium in the case of a higher pH . In the right panel, F marks the

fundamental equilibrium in the baseline and F ′ in the case of a higher pfH . Inflation is expressed in annualized terms.

(24)–(25) are shifted in response to an increase in pH for our baseline calibration. Unlike in the

previous AD-AS analysis, we now assume pH < 1 and set yH and πH equal to their equilibrium

values associated with the sunspot equilibrium.12 For ease of exposition we focus on pairs {πL, yL}
for which the lower bound constraint is binding.

According to Proposition 4, we know that an increase in pH leads to a decline in high-state

output and to an increase in high-state inflation. According to equation (25), a rise in high-state

inflation shifts down the low-state AS curve. According to equation (24), the overall effect of

the changes in high-state output and inflation on the AD curve are ambiguous. In our numerical

example, the AD curve is shifted downward, and the shift is big enough such that not only low-state

inflation but also low-state output increases in response to the increase in pH .

In the fundamental equilibrium, the effect of an increase in the persistence of the high-fundamental

state on stabilization outcomes is ambiguous. The right panel of Figure 4 shows how the low-

fundamental-state AD and AS curves (26)–(27) are shifted in response to an increase in pH for our

baseline calibration. Assuming pfH < 1, we set yH and πH equal to their equilibrium values associ-

ated with the fundamental equilibrium. Since an increase in pH leads to an increase in high-state

inflation, the AS curve shifts downward. The effect of a change in pfH on the AD curve is ambiguous

due to the opposing responses of high-state output and inflation. In our numerical example, the

AD curve shifts downward, and the shift is big enough such that not only low-state output but also

low-state inflation declines.

12Hence, when moving along the AD and AS curves we ignore the feedback effect from output and inflation in the
low-confidence state to output and inflation in the high-confidence state.

16



Figure 5: The effect of an increase in price flexibility
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(b) Model with fundamental shock

Note: Solid lines: κ = 0.0194; dashed lines: κ = 0.0364. The increase in κ is obtained by a reduction in the

parameter α from 0.8106 to 0.75. In the left (right) panel, S (F ) marks the sunspot (fundamental) equilibrium in the

baseline and S′ (F ′) marks the sunspot (fundamental) equilibrium in the case of a higher κ. Inflation is expressed in

annualized terms.

3.3.3 Degree of price flexibility

Finally, a parameter of particular interest is κ, the slope coefficient of the Phillips curve. Fundamental-

driven liquidity traps are prone to the so-called ‘paradox of flexibility’. That is, when the lower

bound is binding more price flexibility amplifies the contraction in output. In contrast, there is in

general no ‘paradox of flexibility’ in the sunspot equilibrium.

Proposition 5 Suppose λ = λ̄, π∗ = 0, and pH = 1. In the sunspot equilibrium, ∂πL
∂κ > 0, ∂yL

∂κ > 0.

Proof: See Appendix A.

In Appendix A, we provide expressions for ∂πL
∂κ , ∂yL

∂κ for the more general case of pH ≤ 1 and

find that their signs depend on parameter values. However, for reasonable parameterizations, we

find that an increase in price flexibility increases output and inflation in the low-confidence state.

Appendix B shows that the sign of ∂πL
∂κ , ∂yL

∂κ in the fundamental equilibrium is in principle also

ambiguous. However, for reasonable parameterizations, we find that an increase in price flexibility

reduces output and inflation in the low-fundamental state. Moreover, for pfH = 1, the signs are

unambiguously negative.

Figure 5 shows how an increase in the degree of price flexibility affects the AD and AS curves in

the low state of the model with the sunspot shock (left panel) and the model with the fundamental

shock (right panel). Increasing the degree of price flexibility does not affect the AD curve in the

region where the lower bound is binding. The AS curve, however, becomes flatter. Since in the

model with the sunspot shock the AD curve is steeper than the AS curve, a flattening of the AS
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curve raises equilibrium output and inflation—from point S to point S′—in the low-confidence state

of the sunspot equilibrium. The graphical analysis also helps to understand why prices have to be

sufficiently flexible for the sunspot equilibrium to exist. The less flexible prices are, the steeper is

the AS curve. When prices are sufficiently sticky, the AS curve is steeper than the AD curve and

the sunspot equilibrium fails to exist.

In the model with the fundamental shock, instead, the increase in price flexibility leads to a

decline in equilibrium output and inflation—from point F to point F ′. When prices become suffi-

ciently flexible, the AS curve becomes flatter than the AD curve and the fundamental equilibrium

ceases to exist.

4 Inflation conservatism

Having understood the basic properties of the sunspot equilibrium, we now explore the desirability

of alternative policy frameworks in the sunspot equilibrium. We begin by analyzing the desirability

of inflation conservatism. We then explore the desirability of a non-zero inflation target in the next

section. In the section that follows, we extend the model to allow for government spending and

examine the desirability of fiscal activism.

An inflation-conservative central banker is a policymaker who puts a higher relative weight on

inflation stabilization than society as a whole (λ < λ̄). In models with occasional fundamental-

driven liquidity trap episodes, the appointment of an inflation-conservative policymaker improves

welfare relative to the case where the policymaker has the same objective function as society as a

whole (Nakata and Schmidt, 2018). Specifically, if the only source of uncertainty is a natural real

rate shock—as assumed for the fundamental-shock model—then it is optimal to appoint a strictly

inflation-conservative policymaker, i.e. λ = 0.

Let us now turn to the model with the sunspot shock. We first establish how a change in

the central bank’s relative weight on output stabilization λ affects allocations and prices in the

sunspot equilibrium and then explore the welfare implications. To focus on the role of inflation

conservatism, we assume π∗ = 0 throughout this section.

Proposition 6 Suppose π∗ = 0 and pH < 1. In the sunspot equilibrium, ∂πL
∂λ > 0, ∂yL

∂λ > 0,
∂πH
∂λ < 0, ∂yH

∂λ < 0.

Proof: See Appendix A.

Consider first the high-confidence state. A change in λ affects the policymaker’s perceived

trade-off between inflation and output stabilization. If the policymaker becomes more concerned

with output stabilization (i.e. λ increases), she is ceteris paribus less willing to tolerate a positive

output gap in order to mitigate the rate of deflation. In equilibrium, an increase in λ therefore

reduces output and inflation in the high-confidence state.

Now consider the low-confidence state. To understand why low-state output and inflation are

increasing in λ, we turn again to the AD-AS framework. The left panel of Figure 6 shows graphically
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Figure 6: The effect of an increase in the central bank’s relative weight on output stabilization
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(b) Model with fundamental shock

Note: Solid lines: λ = λ̄ = 0.0019; dashed lines: λ = 0.005. In the left (right) panel, S (F ) marks the sunspot

(fundamental) equilibrium in the baseline and S′ (F ′) marks the sunspot (fundamental) equilibrium in the case of a

higher λ. Inflation is expressed in annualized terms.

how the low-confidence-state AD and AS curves (24)–(25) are shifted in response to an increase in

λ. As in the case of Figure 4, we assume pH < 1, and set yH and πH equal to their equilibrium

values associated with the sunspot equilibrium. The intersection point S of the two solid lines

marks the sunspot equilibrium for the baseline calibration. From Proposition 6, we know that an

increase in λ leads to a decline in high-state output and inflation. According to equation (24), lower

high-state output and inflation shifts down the low-state AD curve. Intuitively, households’ desired

consumption declines in response to a drop in expected future output and inflation. According to

equation (25), lower high-state inflation shifts up the low-state AS curve. Firms want to lower prices

in response to a decline in expected future inflation. The new AD and AS curves are represented

by the two dashed lines. At the equilibrium inflation rate prevailing in the baseline, there is now

excess supply. As pointed out earlier, when the lower bound is binding excess supply is decreasing

in the rate of inflation in the sunspot-shock model. Consistent with Proposition 6, the intersection

point for the case of a higher λ, marked S′, lies to the north-east of the intersection point for the

baseline.

How does this compare to the fundamental equilibrium? In the fundamental equilibrium, an

increase in λ reduces inflation in the high state whereas the effect on output is ambiguous (Nakata

and Schmidt, 2018). The logic underlying the effect on inflation is very similar to the one in the

sunspot equilibrium. However, the effect on low-fundamental state outcomes differs from the one in

the sunspot equilibrium. In the fundamental equilibrium, an increase in λ reduces output and infla-

tion in the low-fundamental state. This is the case because lower inflation in the high-fundamental

state lowers conditional inflation expectations in the low-fundamental state and thereby aggravates

the downward pressure on output and inflation. This also explains why the effect of an increase in λ

on high-state output is ambiguous. From a partial equilibrium perspective, an increase in λ should
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lead to a reduction in high-state output (moving it closer to its target). However, if the low-state

stabilization outcomes deteriorate sufficiently in response to the increase in λ, then the stabilization

trade-off in the high state worsens sufficiently such that high-state output has to increase.

The right panel of Figure 6 depicts how the low-fundamental-state AD and AS curves (26)–(27)

are shifted in response to an increase in λ. Assuming pfH < 1, we set yH and πH equal to their

equilibrium values associated with the fundamental equilibrium. The intersection point F of the

two solid lines marks the fundamental equilibrium for the baseline calibration. Now consider an

increase in λ. Since an increase in λ leads to a decline in high-state inflation, the AS curve shifts

upward. The effect on the AD curve is ambiguous due to the ambiguous response of high-state

output. In our numerical example, the AD curve shifts slightly downwards in response to the

increase in λ. In the fundamental equilibrium, ∂yL∂λ < 0 and hence even if the AD curve was shifting

upwards in response to the increase in λ, the upward shift would have to be small enough so that

the new intersection point F ′ of the two dashed lines lies to the south-west of the intersection point

for the baseline.

In summary, while a change in λ shifts the AS curve in the sunspot-shock model and in the

fundamental-shock model in the same direction, and in most cases shifts the AD curve in both

models in the same direction, the sign of the effect on low-state output and inflation is mirror

inverted. As can be seen from Figure 6, the reason is again that the relative slopes of the AD and

AS curves in the two models differ.

We are now ready to assess the welfare implications of inflation conservatism in the model with

the sunspot shock.

Proposition 7 Suppose π∗ = 0 and pH < 1. Let λ∗ denote the value of λ ∈ [0,∞] that maxi-

mizes households’ unconditional welfare EVt where Vt is defined in equation (3). In the sunspot

equilibrium, λ∗ > 0.

Proof: See Appendix A.

In words, strict inflation conservatism is not desirable in the sunspot equilibrium. In the Ap-

pendix, we show that λ∗ can be either smaller or bigger than households’ relative weight on output

gap stabilization λ̄ and provide the corresponding necessary and sufficient conditions.13

To understand the ambiguity with regard to the optimal λ, note that society’s relative weight

on output stabilization λ̄ is typically very small so that the effect of a change in λ on society’s

welfare primarily depends on its effect on inflation. In the sunspot equilibrium, an increase in λ has

a positive effect on low-state inflation (moving low-state inflation closer to target), and a negative

effect on high-state inflation (moving high-state inflation further away from target), leading to

the ambiguity. As mentioned earlier, this result is in contrast to the result for the fundamental

equilibrium that the optimal λ is unambiguously zero.

The left panel of Figure 7 shows how λ∗ in the sunspot-shock model depends on pH and pL, the

persistence of the high and the low state, respectively. The parameterization follows Table 1. The

13In fact, it can be optimal to assign a pure output gap stabilization objective to the central bank, λ∗ =∞.
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Figure 7: Optimal relative weight on output stabilization in model with sunspot shock
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Note: The parameterization is summarized in Table 1. In the right panel, pH = pL. The dashed horizontal line in

the right panel indicates λ∗/λ̄ = 1.

figure distinguishes three cases: i. λ∗ ∈ (0, λ̄) (light gray-shaded area), ii. λ∗ ∈ [λ̄,∞) (gray-shaded

area), and iii. λ∗ = ∞ (black-shaded area). The white-shaded area represents pairs of pH and pL

for which the sunspot equilibrium does not exist. A clear pattern emerges. For pairs {pH , pL} that

are just high enough to satisfy the conditions for existence of the sunspot equilibrium, it is optimal

to assign a pure output stabilization objective to the central bank. When increasing the persistence

of the two confidence states, the optimal relative weight on output stabilization becomes finite but

is larger than society’s output weight. Most pairs {pH , pL} that are consistent with equilibrium

existence fall into this second category. Finally, if both confidence states are highly persistent,

then the optimal relative weight on output stabilization is smaller than society’s weight but strictly

positive.

The right panel of Figure 7 plots the ratio of the optimal relative weight on output stabilization

λ∗ to society’s weight λ̄ (left vertical axis, solid black line) and the welfare gain from assigning

λ∗ instead of λ̄ to the central bank (right vertical axis, blue dashed line) as a function of the

persistence of the two confidence states, assuming pH = pL. The optimal relative weight on output

gap stabilization is monotonically declining in the persistence of the confidence states. For values

of pH , pL for which the solid line lies below the thin horizontal line, the optimal relative weight

on output stabilization in the central bank’s objective function is smaller than society’s weight.

The welfare gain from assigning an optimized relative output weight is most elevated when the

persistence parameters take on the smallest possible values that are still consistent with equilibrium

existence, that is, when inflation conservatism is undesirable.

In summary, whether or not some degree of inflation conservatism is optimal in the sunspot

equilibrium depends on the parameterization. Strict inflation conservatism (λ = 0)—the opti-

mal institutional configuration in the fundamental equilibrium—is never optimal in the sunspot

equilibrium.
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Figure 8: The effect of increasing the central bank’s inflation target

π
L

-4 -3 -2 -1 0 1 2

y L

-6

-4

-2

0

2

4
AD (Baseline)
AS (Baseline)

AD (Higher π*)

AS (Higher π*)

S

S'

NS

NS'

(a) Model with sunspot shock

π
L

-3 -2 -1 0 1 2

y L

-8

-6

-4

-2

0

2

4

F'

F

(b) Model with fundamental shock

Note: Solid lines: π∗ = 0; dashed lines: π∗ = 1/400. In the left (right) panel, S (F ) marks the sunspot (fundamental)

equilibrium in the baseline and S′ (F ′) marks the sunspot (fundamental) equilibrium in the case of a higher π∗. NS

marks the no-sunspot equilibrium in the baseline, and NS′ marks the no-sunspot equilibrium in the case of a higher

π∗. Inflation is expressed in annualized terms.

5 A non-zero inflation target

A alternative institutional configuration that has been shown to improve society’s welfare in the

fundamental equilibrium is the imposition of a strictly positive central bank inflation target (Nakata

and Schmidt, 2018). This section explores whether society’s welfare in the sunspot equilibrium can

be increased by assigning to the central bank a non-zero inflation target. Throughout this section,

we assume λ = λ̄.

While the sign of allocations and prices is sensitive to the quantitative value of the central

bank’s inflation target, the effects of a marginal change in the target on allocations and prices is

unambiguously determined.

Proposition 8 In the sunspot equilibrium, ∂πL
∂π∗ < 0, ∂yL

∂π∗ < 0, ∂πH
∂π∗ > 0, ∂yH

∂π∗ > 0.

Proof: See Appendix A.

In the sunspot equilibrium, a marginal increase in the inflation target lowers output and in-

flation in the low-confidence state and raises output and inflation in the high-confidence state.

Qualitatively, the effects are thus the same as those of a marginal reduction in λ, see Proposition

6. The left panel of Figure 8 depicts how the low-confidence state AD and AS curves (24)–(25)

are shifted in response to an increase in the central bank’s inflation target, assuming that the high

state is an absorbing state. An increase in the inflation target shifts the AD curve upwards, since,

all else equal, agents increase their desired consumption given higher expected inflation. At the

same time, the AS curve shifts downwards, since firms’ desired price increases in light of higher ex-

pected inflation for given current demand. Hence, at the inflation rate consistent with the sunspot
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equilibrium in the baseline, marked by intersection point S, there is now excess demand. In the

model with the sunspot shock, excess demand is increasing in the inflation rate as long as the lower

bound is binding. To restore equilibrium, low-state inflation and output thus have to decline. The

new intersection point S′ lies to the south-west of the baseline intersection point S.14

In the fundamental equilibrium, a marginal increase in the inflation target also raises high-state

inflation. The effects on low-state outcomes, however, differ from those in the sunspot equilibrium.

Higher inflation in the high-fundamental state lowers the conditional ex-ante real interest rate in

the low-fundamental state. This stimulates aggregate demand and leads to an increase in low-state

output and inflation (Nakata and Schmidt, 2018). The right panel of Figure 8 depicts how in

the model with the fundamental shock the low-state AD and AS curves (26)–(27) are shifted in

response to an increase in the inflation target.

For the characterization of the welfare-maximizing inflation target in the sunspot-shock model,

it is also useful to show that there exists an inflation target such that inflation in the high-confidence

state is perfectly stabilized.

Lemma 1 There exists a π0 > 0 such that in the sunspot equilibrium πH = 0 if π∗ = π0.

Proof: See Appendix A.

One can then establish the following result concerning the welfare-maximizing inflation target.

Proposition 9 Suppose λ = λ̄ and pH < 1. Let π∗∗ denote the value of π∗ > −κ2+λ(1−β)
κ2 rn that

maximizes households’ unconditional welfare EVt where Vt is defined in equation (3). In the sunspot

equilibrium, π∗∗ < π0.

Proof: See Appendix A.

The optimal inflation target can be negative or positive. However, according to the above

proposition, even if it is positive, it will be below the level needed to engineer strictly positive

inflation in the high-confidence state. The reason for the ambiguity concerning the sign of the

optimal target is similar to the reason for why the optimal relative weight on output stabilization—

analyzed in the previous section—can be higher or lower than society’s weight. In the sunspot

equilibrium, an increase in π∗ has a negative effect on low-state inflation (moving low-state inflation

further into negative territory), and a positive effect on high-state inflation (moving high-state

inflation closer to target as long as π∗ < π0).15

The left panel of Figure 9 shows how π∗∗ in the sunspot-shock model depends on pH and pL,

the persistence of the high and the low state, respectively. The figure distinguishes three cases:

i. π∗∗ > 0 (light gray-shaded area), ii. π∗∗ ≤ 0 and yH > 0 (gray-shaded area), and iii. π∗∗ < 0

and yH ≤ 0 (black-shaded area). The white-shaded area represents pairs of pH and pL for which

the sunspot equilibrium does not exist. When the two confidence states are highly persistent, the

14An increase in the inflation target also affects the no-sunspot equilibrium. With a non-zero inflation target, the
central bank faces a trade-off between output stabilization and stabilization of inflation at target. In equilibrium,
when the inflation target is positive, high-state inflation is slightly below target and the output gap is slightly positive.

15Appendix A provides a numerical example of how π∗ affects allocations and welfare in the sunspot equilibrium.
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Figure 9: Optimal inflation target in model with sunspot shock
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Note: The parameterization is summarized in Table 1. In the right panel pH = pL.

optimal inflation target is strictly positive. When the two states are less persistent, the optimal

inflation target is negative. Most pairs {pH , pL} that are consistent with equilibrium existence

fall into this second category. If the pair of persistence parameters just marginally satisfies the

conditions for equilibrium existence, the optimal inflation target is sufficiently negative to engineer

a negative output gap in the high state. This last case is special in that a negative high-state

output gap is unattainable under inflation conservatism.16

The right panel of Figure 9 plots the optimal inflation target (left vertical axis, solid black

line) and the welfare gain from assigning the optimal target instead of π∗ = 0 (right vertical axis,

dashed blue line) as a function of the persistence of the two confidence states, assuming pH = pL.

For sufficiently low values of pH , pL, the optimal inflation target is negative and increasing in

the persistence parameters. When pH , pL are high enough, the optimal inflation target is slightly

positive. The welfare gain from assigning an optimized inflation target is most elevated when the

persistence parameters take on the lowest possible values for which the sunspot equilibrium exists.

There is a close relationship between the assignment of an inflation target and inflation conser-

vatism.

Proposition 10 Suppose pH < 1. For any λ̂ ≥ 0, there exists a π̂∗ such that the sunspot equilib-

rium under optimal discretionary policy associated with the inflation conservatism regime satisfying

(λ = λ̂, π∗ = 0) is replicated by the inflation target regime satisfying (λ = λ̄, π∗ = π̂∗), where

π̂∗ ≡ β(1− pH)rn

βλ̂(1− pH)− (κ2 + λ̂(1− β))C

(
λ̄− λ̂

)
. (28)

Proof: See Appendix A.

16The lowest value for high-state output attainable under inflation conservatism is yH = 0, which requires λ =∞.
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The reverse is not true, since a sufficiently negative inflation target results in a strictly negative

high-state output gap, an allocation that is unattainable under inflation conservatism for any

λ ≥ 0.17 An interesting implication of equation (28) is that if the allocation under the optimal

inflation target is attainable under inflation conservatism, then the optimal inflation target π∗∗ is

positive if and only if the optimal relative output weight λ∗ is smaller than society’s weight λ̄.18

This can also be seen by the fact that the boundary between the light gray and dark gray areas in

Figure 9 is identical to the one in Figure 7.

6 Fiscal activism

This section extends the model to allow for a meaningful role of fiscal stabilization policy. To do

so, we introduce government consumption into the baseline model, the level of which is chosen

optimally by the discretionary policymaker together with the level of the policy rate. We first

show how the introduction of fiscal policy affects equilibrium existence and allocations and then

turn to the design of fiscal policy by asking how much relative weight the objective function of the

discretionary policymaker should put on government spending stabilization.

6.1 The model with fiscal policy

The aggregate private sector behavioral constraints in the model with government spending are

πt = κxt + βEtπt+1 (29)

xt = (1− Γ)gt + Et(xt+1 − (1− Γ)gt+1)− σ (it − Etπt+1 − rnt ) , (30)

where gt denotes government spending as a share of steady-state output, expressed in deviation

from the steady-state ratio, xt ≡ yt − Γgt will be referred to as the modified output gap, and

Γ = σ−1

σ−1+η
.19

We assume that the provision of public goods provides utility to households and that util-

ity is separable in private and public consumption. A second-order approximation to household

preferences leads to20

Vt = −1

2
Et

∞∑
j=0

βj
(
π2
t+j + λ̄x2

t+j + λ̄gg
2
t+j

)
. (31)

The relative weight on government spending stabilization satisfies λ̄g = λ̄Γ
(
1− Γ + σ

ν

)
> 0, where

17Likewise, a sufficiently positive inflation target results in a strictly positive high-state inflation rate, an allocation
that is also unattainable under inflation conservatism for any λ ≥ 0.

18To see this, note that βλ̂(1− pH)− (κ2 + λ̂(1− β))C > 0 in the sunspot equilibrium.
19The public consumption good is assumed to be compiled based on the same aggregation technology as the private

consumption good.
20See Schmidt (2013) for details.
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ν denotes the inverse of the elasticity of the marginal utility of public consumption with respect to

total output. As before, λ̄ = κ/θ.

At the beginning of time, society delegates monetary and fiscal policy to a discretionary poli-

cymaker. The objective function of the policymaker is given by

VMF
t = −1

2
Et

∞∑
j=0

βj
(
π2
t+j + λ̄x2

t+j + λgg
2
t+j

)
, (32)

where λg > 0 is a policy parameter the value of which is chosen by society when designing the

policymaker’s objective function. For λg = λ̄g, the policymaker’s objective function coincides with

society’s objective function. The policymaker’s optimization problem and the first-order conditions

are relegated to Appendix C.

As before, we focus on a sunspot equilibrium where the lower bound is binding in the low-

confidence state and slack in the high-confidence state.

Definition 3 The sunspot equilibrium in the sunspot-shock model with fiscal policy is given by a

vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the following system of linear equations

xH = pHxH + (1− pH) [xL + (1− Γ)(gH − gL)] + σ [pHπH + (1− pH)πL − iH + rn] (33)

πH = κxH + β [pHπH + (1− pH)πL] (34)

λggH = −(1− Γ)
(
λ̄xH + κπH

)
(35)

0 = λ̄xH + κπH (36)

xL = pLxL + (1− pL) [xH − (1− Γ)(gH − gL)] + σ [(1− pL)πH + pLπL − iL + rn] (37)

πL = κxL + β [(1− pL)πH + pLπL] (38)

λggL = −(1− Γ)
(
λ̄xL + κπL

)
(39)

iL = 0, (40)

and satisfies the following two inequality constraints

iH > 0 (41)

λ̄xL + κπL < 0. (42)

The sunspot equilibrium is compared to a fundamental equilibrium in a setup where the two-

state sunspot shock is replaced with a two-state natural real rate shock. As before, we consider a

fundamental equilibrium where the lower bound constraint is slack in the high-fundamental state

and binding in the low-fundamental state.

Definition 4 The fundamental equilibrium in the fundamental-shock model with fiscal policy is

given by a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the following system of linear equations
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xH = pfHxH + (1− pfH) [xL + (1− Γ)(gH − gL)] + σ
[
pfHπH + (1− pfH)πL − iH + rn

]
(43)

πH = κxH + β
[
pfHπH + (1− pfH)πL

]
(44)

xL = pfLxL + (1− pfL) [xH − (1− Γ)(gH − gL)] + σ
[
(1− pfL)πH + pfLπL − iL + rnL

]
(45)

πL = κxL + β
[
(1− pfL)πH + pfLπL

]
(46)

as well as (35), (36), (39) and (40), and satisfies the inequality constraints (41) and (42).

6.2 Equilibrium existence and allocations

The following proposition establishes a necessary and sufficient condition for existence of the sunspot

equilibrium in the model with fiscal policy.

Proposition 11 The sunspot equilibrium exists if and only if

λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1− pL + 1− pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0, (47)

where Ω(pL, pH , κ, σ, β) ≡ pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) .

Proof: See Appendix D.

From Proposition 1 we know that the sunspot equilibrium in the model without fiscal policy

and a zero-inflation target exists if and only if Ω(·) > 0. In the model with fiscal policy, Ω(·) > 0 is

a necessary but not a sufficient condition for existence of the sunspot equilibrium. Importantly, the

condition for equilibrium existence depends on the policy parameter λg. Suppose Ω(·) > 0. Then the

sunspot equilibrium exists if and only if λg >
(1−Γ)2

Ω(·)
1−pL+1−pH

κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0.

The condition for existence of the fundamental equilibrium in the model with the natural real

rate shock is provided in Appendix E.

Figure 10 plots the region of existence for the sunspot equilibrium (black area), and the region

of existence for the fundamental equilibrium (gray area). The left panel shows results for λg = λ̄g

and the right panel for λg < λ̄g. The parameterization follows Table 1, except that we now account

for a non-zero steady-state government spending to output ratio of 0.2, which implies that the

inverse of the elasticity of the marginal utility of private consumption with respect to output σ

becomes 0.4.21 The inverse of the elasticity of the marginal utility of public consumption with

respect to output ν is set to 0.1.22 This implies λ̄g = 0.0082. As in the case without government

consumption, for the sunspot equilibrium to exist the two confidence states have to be sufficiently

21Assuming that the intertemporal elasticity of substitution in private consumption equals 0.5, as before, we have
σ = 0.5× 0.8 = 0.4.

22This corresponds to the case in which the marginal utility of consumption of the public good decreases at the
same rate as the marginal utility of consumption of the non-public good, i.e. ν = 0.5× 0.2 = 0.1.
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Figure 10: Existence regions in the model with fiscal policy
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persistent, whereas for the fundamental equilibrium to exist the low-fundamental state must not

be too persistent. Furthermore, in line with Proposition 11, the existence region for the sunspot

equilibrium shrinks when λg is lowered.

Next, we characterize allocations and prices in the sunspot equilibrium.

Proposition 12 In the sunspot equilibrium, πL < 0, xL < 0, gL > 0, πH ≤ 0, xH ≥ 0 and gH = 0

for any λg > 0. When pH < 1, then πH < 0, xH > 0.

Proof: See Appendix D.

The policymaker implements a government spending stimulus when the lower bound on nominal

interest rates is binding, and keeps government spending at its steady state otherwise. The same

holds true for the fundamental equilibrium. See Appendix E. Next, we explore how the availability

of government spending as an additional policy tool affects society’s welfare.

6.3 Welfare

As an intermediate step, we first establish how a marginal change in the policymaker’s relative

weight on government spending stabilization λg affects allocations and prices.

Proposition 13 In the sunspot equilibrium, ∂πL
∂λg

> 0, ∂xL
∂λg

> 0, ∂gL
∂λg

< 0, ∂πH
∂λg
≥ 0, ∂xH

∂λg
≤ 0. If

pH < 1, ∂πH
∂λg

> 0, ∂xH
∂λg

< 0.

Proof: See Appendix D.

In words, the higher the relative weight on government spending stabilization in the policy-

maker’s objective function, the smaller the fiscal stimulus in the low-confidence state. At the same
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time, an increase in λg raises the inflation rate in both confidence states as well as the modified

output gap in the low-confidence state and lowers the modified output gap in the high-confidence

state. Thus, the higher λg the closer to target is the economy.

In the fundamental equilibrium, instead, an increase in λg lowers the modified output gap and

inflation in the low state as well as inflation in the high state and raises the high-state modified

output gap. See Appendix E. The effect on government spending in the low-fundamental state

is ambiguous. One the one hand, a higher relative weight on government spending stabilization

implies a smaller fiscal stimulus for given values of low-state inflation and modified output gap, see

equation (39). On the other hand, an increase in λg makes the decline in low-fundamental state

inflation and modified output gap more severe, thereby raising the optimal level of government

spending in the low-fundamental state.

It is instructive to show how a change in λg affects the low-state AD and AS curves in the two

models. For the sunspot-shock model with fiscal policy and an absorbing high-confidence state the

low-confidence-state AD and AS curves are given by

AD-sunspot: xL = min

[
1

λg + (1− Γ)2λ̄

(
σλg

1− pL
rn +

(
σpLλg
1− pL

− (1− Γ)2κ

)
πL

)
,−κ

λ̄
πL

]
(48)

AS-sunspot: xL =
1− βpL

κ
πL, (49)

where πH and xH have been set equal to zero. For the fundamental-shock model with fiscal policy

and an absorbing high-fundamental state, the low-fundamental-state AD and AS curves are given

by

AD-fundamental: xL = min

[
1

λg + (1− Γ)2λ̄

(
σλg

1− pfL
rnL +

(
σpfLλg

1− pfL
− (1− Γ)2κ

)
πL

)
,−κ

λ̄
πL

]
(50)

AS-fundamental: xL =
1− βpfL

κ
πL, (51)

where again πH and xH have been set equal to zero.

Figure 11 depicts how the AD-AS curves are affected by a reduction in λg. The intersection

point S in the left panel marks the sunspot equilibrium in the sunspot-shock model for the baseline

calibration, and the intersection point NS marks the no-sunspot equilibrium. The intersection

point F in the right panel, in turn, marks the fundamental equilibrium in the fundamental-shock

model for the baseline calibration. In both models, the AD curve becomes flatter to the left of

the kink when λg is lowered. Intuitively, when the policymaker adjusts government spending more

aggressively to changes in inflation, aggregate demand, too, responds ceteris paribus more elastically

to changes in inflation. In the model with the sunspot shock, the AD curve is steeper than the AS

curve, and hence a flattening of the AD curve shifts the point at which the two curves intersect

29



Figure 11: The effect of reduction in λg on low-state aggregate demand and supply
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Note: Solid lines: λg = λ̄g; dashed lines: λg = λ̄g/10. In the left panel, S marks the sunspot equilibrium in the

baseline, S′ marks the sunspot equilibrium in case of a lower λg and NS marks the no-sunspot equilibrium. In the

right panel, F marks the fundamental equilibrium in the baseline and F ′ marks the fundamental equilibrium in case

of a lower λg. Inflation is expressed in annualized terms.

when the lower bound is binding to the south-west. In contrast, in the model with the fundamental

shock, the AD curve is flatter than the AS curve, and hence a flattening of the AD curve shifts the

point at which the two curves intersect to the north-east.

Propositions 12 and 13 together have a straightforward implication for the optimal value of λg

in the sunspot equilibrium.

Proposition 14 Let λ∗g denote the value of λg ∈ (0,∞] that maximizes households’ unconditional

welfare EVt where Vt is defined in equation (31). In the sunspot equilibrium, λ∗g =∞.

It is easy to show that as λg → ∞, gL → 0. Intuitively, if it becomes infinitely costly for

the policymaker to adjust government spending, she will not use it as a stabilization tool. This

turns out to be the optimal configuration in the sunspot equilibrium. Put differently, introducing

an additional policy tool in the form of government consumption reduces welfare in the sunspot

equilibrium. Conditional on the existence of the sunspot equilibrium it is therefore optimal to make

the use of the tool so expensive for the policymaker that she will refrain from using it.23

In the model with the fundamental shock, instead, fiscal activism can improve welfare. Specif-

ically, Schmidt (2017) shows that λ∗g < λ̄g.
24

23Appendix D provides a numerical example of how λg affects allocations and welfare in the sunspot equilibrium.
24Schmidt (2017) provides a closed-form solution for the welfare-maximizing λg in case of pfH = 1 and numerical

results for pfH < 1.
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6.3.1 Why is government spending raised in the low-confidence state?

If an expansionary fiscal policy in the low-confidence state moves the economy further away from

target in both confidence states, why does the policymaker not simply refrain from raising govern-

ment spending in the low-confidence state for any λg > 0? To shed light on this question consider

the following thought experiment. Suppose, for ease of exposition, that pH = 1 and λg → ∞,

i.e. the high-confidence state is an absorbing state and there is no systematic use of government

spending for stabilization purposes in the low-confidence state. Consider some period T ≥ 0 where

the economy is in the low-confidence state and the lower bound is binding. The private sector

behavioral constraints for period T can be written as

xTL = (1− Γ)gTL − pL
(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ̄+ κσ

(
κ2 + λ̄(1− βpH)

)
κE

rn + σrn

πTL = κxTL − βpL
κ2 + λ̄(1− βpH)

E
rn,

where πTL , x
T
L, g

T
L are the inflation rate, the modified output gap and government spending in period

T . Now suppose that in period T there is an unexpected one-time increase in government spending.

The marginal effect of this policy on the modified output gap and the inflation rate in period T is

(∂xTL/∂g
T
L) = 1− Γ > 0 and (∂πTL/∂g

T
L) = κ(1− Γ) > 0. In words, the unexpected and temporary

government spending stimulus raises the modified output gap and inflation in the low-confidence

state.

Hence, if expectations do not change, an increase in government spending is expansionary.

However, if the discretionary policymaker uses government spending systematically, i.e. if λg <∞,

then agents anticipate government spending to be increased when the economy transitions from

the high-confidence state to the low-confidence state, and to stay at this higher level for as long

as the economy remains in the low-confidence state. We have already seen that this is detrimental

for welfare. A discretionary policymaker who decides to raise government spending in the low-

confidence state would thus like the private sector to expect the fiscal expansion to be temporary.

However, when the economy is still in the low-confidence state in the next period, the discretionary

policymaker has an incentive to renege on her promise. A policy announcement of a one-time fiscal

stimulus is therefore not credible. In equilibrium, the policymaker keeps government spending high

for as long as confidence is low and the forward-looking private sector internalizes this accordingly.

6.3.2 A policy paradox

Some of the results presented in this subsection seem to have conflicting implications for the design

of fiscal policy in the model with the sunspot shock. Indeed, Propositions 11, 12 and 13 viewed

together give rise to a paradox. According to Propositions 12 and 13, the appointment of a fiscally-

activist policymaker (λg < λ̄g) reduces welfare in the sunspot equilibrium. But according to

Proposition 11, if the appointed policymaker is sufficiently activist—that is, if λg is small enough—

the sunspot equilibrium ceases to exist.
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Figure 12: Non-existence of the sunspot equilibrium in case of sufficient fiscal activism
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Intuitively, when λg → 0, the policymaker is willing to do “whatever it takes”—in terms of

fiscal policy—to make sure that the weighted sum of inflation and the modified output gap are

stabilized. Since the lower bound is not binding when this target criterion is met, λg → 0 rules

out the sunspot equilibrium. In this case, the only stationary equilibrium in the model with the

sunspot shock is the no-sunspot equilibrium where the shock does not affect agents’ behavior. In

the no-sunspot equilibrium, all variables are at target in both confidence states. Figure 12 provides

a graphical illustration. For a sufficiently low λg the AD curve to the left of the kink becomes

flatter than the AS curve and there is only one intersection point left, which is the one associated

with the no-sunspot equilibrium.

6.4 Comparison with an exogenous government spending stimulus

In our analysis of fiscal policy, government spending is an endogenous variable set by an optimizing

policymaker. A more common approach in the literature on fiscal policy in expectations-driven

liquidity traps is to treat the fiscal policy instrument as an exogenous variable (e.g. Mertens and

Ravn, 2014; Bilbiie, 2018). We therefore close the section with a brief comparison of these two

approaches.

Suppose, government spending follows an exogenous process that is perfectly correlated with

the sunspot shock, i.e. gt = gL if ξt = ξL and gt = gH if ξt = ξH , where gL > gH = 0. For this case,

the definition of the sunspot equilibrium has to be slightly modified.

Definition 5 The sunspot equilibrium in the sunspot-shock model with exogenous fiscal policy is

given by a vector {xH , πH , iH , xL, πL, iL} that solves the system of linear equations (33), (34), (36),
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(37), (38), (40), and satisfies the inequality constraints (41) and (42).

The low-confidence-state AD and AS curves in the sunspot-shock model with exogenous fiscal

policy and an absorbing high-confidence state (pH = 1) are then given by

AD-sunspot g-ex: xL = min

[(
σ

1− pL
rn + (1− Γ)gL

)
+

σpL
1− pL

πL,−
κ

λ̄
πL

]
(52)

AS-sunspot g-ex: xL =
1− βpL

κ
πL (53)

Figure 13 compares the effects of a decline in λg—which in equilibrium results in an increase

in gL—on the AD-AS curves in the model with endogenous fiscal policy to those of an increase in

gL in the model with exogenous fiscal policy. For the baseline, it is assumed that λg = ∞ for the

model with endogenous fiscal policy and gL = 0 for the model with exogenous fiscal policy. Hence,

in the baseline, the AD curve is the same whether fiscal policy is endogenous or exogenous. The

sunspot equilibrium in the baseline is represented by the intersection of the AD curve (red solid

line) with the AS curve (blue solid line), marked by point S. When considering an increase in

low-state government spending in the model with exogenous fiscal policy, we calibrate the stimulus

to be of the same size as the equilibrium increase in government spending that occurs in the model

with endogenous fiscal policy in response to the reduction in λg.

Figure 13: Low-confidence state AD-AS curves: Endogenous vs exogenous fiscal policy
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(fiscal policy endogenous); green dashed line: gL = 4 (fiscal policy exogenous). Inflation is expressed in annualized

terms.

As discussed before, in the model with endogenous fiscal policy a change in λg affects the slope

of the AD curve to the left of the kink. A reduction in λg makes the AD curve flatter (red dashed
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line). In the model with exogenous fiscal policy, a change in low-state government spending instead

affects the intercept term in the AD curve and results in a level shift to the left of the kink. An

increase in low-state government spending shifts the AD curve upwards (green dashed line). While

the sunspot equilibria in the two models are observationally equivalent by construction (see point

S′), the two AD curves are not observationally equivalent.

7 Conclusion

Expectations-driven liquidity traps differ from fundamental-driven liquidity traps, both, in terms of

their basic properties as well as in terms of their implications for the design of desirable monetary

and fiscal stabilization policies. Moreover, policy design becomes more complicated when liquidity

trap episodes are caused by changes in agents’ confidence than when they are caused by changes

in the economy’s fundamentals.

The occurrence of occasional fundamental-driven liquidity trap events makes it desirable for

society to assign a strict inflation-conservative objective function or an objective function with a

strictly positive inflation target—high enough to generate positive inflation in the high state—to

the central bank. No such clear-cut policy recommendations can be derived in case of expectations-

driven liquidity trap events. The optimal inflation target may be negative or positive depending on

the structural characteristics of the economy and the average persistence of the confidence states.

Likewise, the optimal relative weight on inflation in the central bank’s objective function may

be smaller or larger than the weight that society puts on inflation stabilization. However, strict

inflation conservatism or an inflation target that generates positive inflation in the high state are

never optimal in the sunspot equilibrium.

Turning to fiscal policy, the use of optimal discretionary government spending is welfare-

improving in the case of fundamental-driven liquidity traps and welfare-reducing in the case of

expectations-driven liquidity traps. Nevertheless, it may be desirable to assign an explicit role

to fiscal policy in the face of the latter too, for the appointment of a sufficiently fiscally-activist

policymaker—i.e. one who puts a sufficiently small relative wight on stabilization of government

expenditures—eliminates the sunspot equilibrium.

An obvious avenue for future work is the extension of the analysis to other policy frameworks

that have featured prominently in the ongoing policy debate but have been omitted in this paper

in case they are incompatible with a closed-form solution of the model.
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Appendix

A Sunspot equilibrium in the model without fiscal policy

A.1 Proof of Proposition 1

To proof Proposition 1 on the necessary and sufficient conditions for existence of the sunspot equi-

librium, it is useful to proceed in four steps. Each step is associated with an auxiliary proposition.

Let

A := −βλ(1− pH), (A.1)

B := κ2 + λ(1− βpH), (A.2)

C :=
(1− pL)

σκ
(1− βpL + β(1− pH))− pL, (A.3)

D := −(1− pL)

σκ
(1− βpL + β(1− pH))− (1− pL) = −1− C, (A.4)

and

E := AD −BC. (A.5)

Proposition A.1 There exists a vector {yH , πH , iH , yL, πL, iL} that solves the system of linear

equations (8)–(13).

Proof: Rearranging the system of equations (8)–(13) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations

[
A B

C D

][
πL

πH

]
=

[
κ2π∗

rn

]
. (A.6)

For what follows, it is useful to show that E = 0 is generically inconsistent with existence of

the sunspot equilibrium. Since B > 0, we can always write πH = κ2/Bπ∗ −A/BπL. Plugging this

into CπL + DπH = rn and multiplying both sides by B, we get Dκ2π∗ − EπL = Brn. Since the

right-hand side of this equation is strictly positive, E = 0 is inconsistent with the existence of the

sunspot equilibrium for generic π∗.

Hence, we can invert the matrix on the left-hand-side of (A.6)

[
πL

πH

]
=

1

AD −BC

[
D −B
−C A

][
κ2π∗

rn

]
. (A.7)

Thus,

πH = −Cκ
2

E
π∗ +

A

E
rn (A.8)
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and

πL =
Dκ2

E
π∗ − B

E
rn. (A.9)

From the Phillips curves in both states, we obtain

yH =
κ (β(1− pH)− (1− β)C)

E
π∗ +

βκ(1− pH)

E
rn (A.10)

and

yL =
κ (βpL − 1− (1− β)C)

E
π∗ − (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn. (A.11)

Proposition A.2 Suppose equations (8)–(13) are satisfied. Then λyL+(κπL−π∗) < 0 if and only

if (i) E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn or (ii) E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn.

Proof: Using (A.9) and (A.11), we have

λyL + κ(πL − π∗) = −κ
2 + λ (1− βpL + β(1− pH))

E
κ

(
π∗ +

κ2 + λ(1− β)

κ2
rn
)
. (A.12)

Notice that (κ2 + λ (1− βpL + β(1− pH)))κ > 0, and κ2+λ(1−β)
κ2 rn > 0. Thus, if E > 0 and

π∗ > −κ2+λ(1−β)
κ2 rn, then λyL + κ(πL − π∗) < 0. Similarly, if E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn, then

λyL + κ(πL − π∗) < 0.

Proposition A.3 Suppose equations (8)–(13) are satisfied, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn.

Then iH > 0 if and only if pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) > 0.

Proof: iH is given by

iH =
1− pH
σ

(yL − yH) + pHπH + (1− pH)πL + rn

=

(
pL − (1− pH)− 1−pL+1−pH

κσ (1− βpL + β(1− pH))
)
κ2

E

(
π∗ +

κ2 + λ(1− β)

κ2
rn
)
, (A.13)

where in the second row we made use of (A.8)–(A.11).

Proposition A.4 Suppose equations (8)–(13) are satisfied, E < 0 and π∗ < −κ2+λ(1−β)
κ2 rn. Then

iH < 0.
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Proof: First, substitute equations (A.1), (A.2), and (A.4) into equation (A.5) to obtain

E = βλ(1− pH)−
(
κ2 + λ(1− β)

)
C. (A.14)

Hence, E < 0 implies C > 0.

Corollary A.1 C < 0 implies E > 0.

Next, note that

pL−(1−pH)− 1− pL + 1− pH
κσ

(1− βpL + β(1− pH)) = −C−(1−pH)
1− βpL + β(1− pH) + κσ

κσ
.

Hence, C > 0 implies pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) < 0.

Corollary A.2 pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) > 0 implies C < 0.

From equation (A.13), it follows that pL− (1−pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) < 0, E < 0

and π∗ < −κ2+λ(1−β)
κ2 rn imply iH < 0.

We are now ready to proof Proposition 1. For notational convenience, define

Ω(pL, pH , κ, σ, β) ≡ pL − (1− pH)− 1− pL + 1− pH
κσ

(1− βpL + β(1− pH)) . (A.15)

Proof of “if” part: Suppose that Ω(·) > 0 and π∗ > −κ2+λ(1−β)
κ2 rn. According to Proposition A.1

there exists a vector {yH , πH , iH , yL, πL, iL} that solves equations (8)–(13). According to Corollary

A.2, Ω(·) > 0 implies C < 0. According to Corollary A.1, C < 0 implies E > 0. According

to Proposition A.2, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn imply λyL + κ(πL − π∗) < 0. According to

Proposition A.3, given E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn, Ω(·) > 0 implies iH > 0.

Proof of “only if” part: Suppose that the vector {yH , πH , iH , yL, πL, iL} solves (8)–(13), and

satisfies λyL + κ(πL − π∗) < 0 and iH > 0. According to Proposition A.2, λyL + κ(πL − π∗) < 0

implies that either (i) E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn or (ii) E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn. Ac-

cording to Proposition A.4, (ii) is inconsistent with iH > 0. Hence, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn.

According to Proposition A.3, given E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn, iH > 0 implies Ω(·) > 0.
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A.2 Proof of Proposition 2

The allocations and prices in the sunspot equilibrium are given by

πL = −(C + 1)κ2

E
π∗ − κ2 + λ(1− βpH)

E
rn

yL =
κ (βpL − 1− (1− β)C)

E
π∗ − (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn

πH = −Cκ
2

E
π∗ − βλ(1− pH)

E
rn

yH =
κ (β(1− pH)− (1− β)C)

E
π∗ +

βκ(1− pH)

E
rn

Assuming π∗ = 0 and λ > 0, it holds

πL = −κ
2 + λ(1− βpH)

E
rn < 0

yL = −(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn < 0

iL = 0

πH = −βλ(1− pH)

E
rn < 0

yH =
βκ(1− pH)

E
rn > 0

iH =

(
1− (1− pH)

E

(
(κ2 + λ(1− β))(1− βpL + β(1− pH))

κσ
+ κ2 + λ

))
rn > 0

A.3 Proof of Proposition 3

Assuming π∗ = 0, it holds

∂πL
∂pL

=

(
κ2 + λ(1− βpH)

)
(κ2 + λ(1− β))

[
1 + (κσ)−1 (1 + β − 2βpL + β(1− pH))

]
E2

rn > 0

∂yL
∂pL

=
βE +

[
(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

] [
1 + (κσ)−1 (1 + β − 2βpL + β(1− pH))

]
κE2

×
(
κ2 + λ(1− β)

)
rn > 0,

and

∂πH
∂pL

=
βλ(1− pH)(κ2 + λ(1− β))

[
1 + (κσ)−1 (1 + β − 2βpL + β(1− pH))

]
E2

rn ≥ 0

∂yH
∂pL

=−
βκ(1− pH)(κ2 + λ(1− β))

[
1 + (κσ)−1 (1 + β − 2βpL + β(1− pH))

]
E2

rn ≤ 0
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A.4 Proof of Proposition 4

Assuming π∗ = 0, it holds

∂πL
∂pH

=
(1− pL)β

(
κ2 + λ(1− β)

)
κσE2

[
κ2 − (κσ + β(1− pL))λ

]
rn

∂yL
∂pH

=
(1− pL)β

(
κ2 + λ(1− β)

)
κE2

[
κ2(1− βpL)

κσ
− λ

]
rn,

and

∂πH
∂pH

=
βλ
(
κ2 + λ(1− β)

)
E2

[
pL −

1− pL
κσ

(1− βpL)

]
rn

∂yH
∂pH

=−
βκ
(
κ2 + λ(1− β)

)
E2

[
pL −

1− pL
κσ

(1− βpL)

]
rn

Note that the second term in square brackets on the right-hand side of the above equations equals

Ω(pL, 1, κ, σ, β). Furthermore, note that ∂Ω(·)
∂pH

= 1 + 1−βpL+β(1−βpH)
κσ + β

(
1−pL+1−pH

κσ

)
> 0. Hence,

Ω(pL, 1, κ, σ, β) > 0 is a necessary condition for equilibrium existence for any pH ≥ 0. Consequently,

the second term in square brackets is strictly positive, and it holds ∂πH
∂pH

> 0 and ∂yH
∂pH

< 0.

A.5 Proof of Proposition 5

Assuming π∗ = 0, it holds

∂πL
∂κ

=−
2βκλ(1− pH)(1 + C)−

(
κ2 + λ(1− β + β(1− pH))

) (
κ2 + λ(1− β)

) 1−pL
κσ

1−βpL+β(1−pH)
κ

E2
rn

∂yL
∂κ

=− 1

(κE)2

[
βλκ2(1− pL)(1− pH) + 2βλκ2(1− β)(1− pH)C −

(
κ2 + λ(1− β)

)2
(1− βpL)pL

− λ2(1− β)2β(1− pH)pL − (1− βpL + β(1− pH))(1− β)βλ(1− pH)
]
rn.

For pH = 1, we get

∂πL
∂κ

=

(
κ2 + λ(1− β)

)2
(1− pL)(1− βpL)

(κE)2σ
rn > 0 (A.16)

∂yL
∂κ

=

(
κ2 + λ(1− β)

)2
(1− βpL)pL

(κE)2
rn > 0. (A.17)

A.6 Proof of Proposition 6

Suppose π∗ = 0 and pH < 1. It holds
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∂πL
λ

=
βκ2(1− pH)(1− pL)

E2

κσ + (1− βpL + β(1− pH))

κσ
rn > 0

∂yL
∂λ

=
βκ(1− pH)(1− pL)

E2

κσ + (1− β)(1− βpL + β(1− pH))

κσ
rn > 0

∂πH
∂λ

=− βκ2(1− pH)

E2

[
Ω(pL, pH , κ, σ, β) + (1− pH)

κσ + (1− βpL + β(1− pH))

κσ

]
rn < 0

∂yH
∂λ

=− βκ(1− pH)

E2

[
(1− β)Ω(pL, pH , κ, σ, β) + (1− pH)

κσ + (1− β)(1− βpL + β(1− pH))

κσ

]
rn < 0

A.7 Proof of Proposition 7

Note first that

EV = − 1

1− β
1

2

[
1− pL

1− pL + 1− pH
(
π2
H + λ̄y2

H

)
+

1− pH
1− pL + 1− pH

(
π2
L + λ̄y2

L

)]
, (A.18)

where V is defined in equation (3).

Assuming π∗ = 0, the partial derivative of EV with respect to λ is

∂EV

∂λ
=

β ((1− pH)rn)2

(1− β)(1− pL + 1− pH)E3

{[
βκ2(1− pL)C + κ2(1− βpH)(C + 1)

+ λ̄(1− β)(1− βpL + β(1− pH)) ((1− β)(C + 1) + β(1− pL))
]
λ

+ βκ2
[
(1− pL)(1− pH)βλ̄− (1− pL)(1− β)Cλ̄

]
+ κ4(C + 1)

+ λ̄(1− βpL)κ2 ((1− β)(C + 1) + β(1− pL))

}
.

Note that since (C + 1) > 0 and C < 0, all terms in curly brackets are positive except for

the very first one, βκ2(1 − pL)C < 0. Also note that since in the sunspot equilibrium E > 0, the

term in front of the curly brackets is positive for any λ ≥ 0. Since the only negative term in curly

brackets is multiplied by λ, ∂EV
∂λ |λ=0

> 0, and therefore λ∗ > 0.

Furthermore, if

κ2β(1−pL)C+κ2(1−βpH)(C+1)+λ̄(1−β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL)) ≥ 0,

then ∂EV
∂λ > 0 for all λ ≥ 0. Hence, in this case no interior solution for λ∗ exists and λ∗ =∞.
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If instead

κ2β(1−pL)C+κ2(1−βpH)(C+1)+λ̄(1−β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL)) < 0,

then

λ∗ = −
βκ2

[
(1− pL)(1− pH)βλ̄− (1− pL)(1− β)Cλ̄

]
+ κ4(C + 1) + λ̄(1− βpL)κ2 ((1− β)(C + 1) + β(1− pL))

κ2β(1− pL)C + κ2(1− βpH)(C + 1) + λ̄(1− β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL))

[TO BE ADDED: SECOND ORDER CONDITION]

In this case, λ∗ > λ̄ if

(βκ)
2
(1−pL)λ̄ (C + 1− pH )︸ ︷︷ ︸

<0

+κ
2
(
κ
2

+ (1− βpH )λ̄
)

(C+1)+
(
κ
2
(1− βpL) + (1− β)λ̄(1− βpL + β(1− pH ))

)
(β(1− pL) + (1− β)(C + 1)) λ̄ > 0

A.8 Proof of Proposition 8

Keeping in mind that −1 < C < 0 in the sunspot equilibrium, it holds,

∂πL
∂π∗

= −C + 1

E
κ2 < 0 (A.19)

∂yL
∂π∗

= −β(1− pL) + (1− β)(C + 1)

E
κ < 0, (A.20)

and

∂πH
∂π∗

= −C
E
κ2 > 0 (A.21)

∂yH
∂π∗

=
β(1− pH)− (1− β)C

E
κ > 0. (A.22)

A.9 Proof of Lemma 1

If π0 exists, it holds −Cκ2

E π0 − βλ(1−pH)
E rn = 0. Solving for π0, one obtains

π0 = −βλ(1− pH)

Cκ2
rn, (A.23)

where C < 0, and hence π0 > 0.

A.10 Proof of Proposition 9

The partial derivative of EV with respect to π∗ is
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∂EV

∂π∗
=− 1

(1− β)(1− pL + 1− pH)E2

{[ (
κ2 + λ̄(1− β)2

) (
(1− pH)(C + 1)2 + (1− pL)C2

)
+ λ̄β(1− pH)(1− pL)(1− βpL + 1− βpH)

]
κ2π∗ +

[
λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH))

(β(1− pL) + (1− β)(C + 1)) +
(
κ2 + λ̄(1− β + β2(1− pL + 1− pH))

)
κ2(C + 1)

− (βκ)2λ̄(1− pL)
]
(1− pH)rn

}
.

Note that all terms in the square brackets which are multiplied by π∗ are positive. In the square

brackets which are multiplied by rn all terms are positive except for the last one, −(βκ)2λ̄(1−pL) <

0.

The first-order necessary condition for the welfare-maximizing inflation target is ∂EV
∂π∗ = 0.

Solving for π∗, one obtains

π
∗∗

= −
1− pH
κ2

λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH )) (β(1− pL) + (1− β)(C + 1)) +

(
κ2 + λ̄(1− β + β2(1− pL + 1− pH ))

)
κ2(C + 1)− (βκ)2λ̄(1− pL)(

κ2 + λ̄(1− β)2
) (

(1− pH )(C + 1)2 + (1− pL)C2
)

+ λ̄β(1− pH )(1− pL)(1− βpL + 1− βpH )
r
n

[TO BE ADDED: SECOND ORDER CONDITION]

Note that π∗∗ > κ2+λ̄(1−β)
κ2 rn whenever existence condition (22) is satisfied. Specifically, π∗∗ >

κ2+λ̄(1−β)
κ2 rn if and only if

(
κ2 + λ̄(1− β)

) {
(κ2 + λ̄(1− β)2)C [(1− pL + 1− pH)C + 1− pH ]

}
>
[(
κ2 + λ̄(1− β)

)
λ̄β(1− β)(1− pH) + (βκ)2λ̄(1− pH)

]
[(1− pL + 1− pH)C + 1− pH ] ,

where (1− pL + 1− pH)C + 1− pH = −(1− pL)Ω(pL, pH , κ, σ, β) < 0. Hence, the left-hand side of

the inequality is positive and the right-hand side is negative, so that the inequality is satisfied.

Next, we show that π∗∗ < π0. This requires

−
βλ̄

C
> −

λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH )) (β(1− pL) + (1− β)(C + 1)) +

(
κ2 + λ̄(1− β + β2(1− pL + 1− pH ))

)
κ2(C + 1)− (βκ)2λ̄(1− pL)(

κ2 + λ̄(1− β)2
) (

(1− pH )(C + 1)2 + (1− pL)C2
)

+ λ̄β(1− pH )(1− pL)(1− βpL + 1− βpH )
,

which can be rewritten as

βλ̄κ
2
(1− pL)(1− β)C

2
+ βλ̄

2
(1− β)

2
(1− pL)C

2
+ βλ̄

(
κ
2

+ λ̄(1− β)
2
)

(1− pH )(C + 1)
2

+ (βλ̄)
2
(1− pL)(1− pH )(1− βpL + 1− βpH )

> (βκ)
2
λ̄(1− pL)(1− pH )C + κ

2
(
κ
2

+ λ̄(1− βpH )
)
C +

[
κ
2
(1− βpL) + λ̄(1− β)(1− βpL + 1− βpH )

]
[β(1− pL) + (1− β)(C + 1)] λ̄C.

Note that all terms on the left-hand side of the inequality sign are strictly positive and all terms

on the right-hand side are strictly negative. This completes the proof.
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A.11 Proof of Proposition 10

Let XS|λ=λ̄,π∗=π̂∗ denote the outcome of variable X ∈ {π, y} in state S ∈ {H,L} of the sunspot

equilibrium when λ = λ̄ and π∗ = π̂∗, and XS|λ=λ̂,π∗=0 when λ = λ̂ and π∗ = 0. We need to show

that XS|λ=λ̄,π∗=π̂∗ = XS|λ=λ̂,π∗=0 for all X × S and any λ̂ ≥ 0.

High-state inflation:

πH|λ=λ̄,π∗=π̂∗ =− Cκ2

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− βλ̄(1− pH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− βλ̂(1− pH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=πH|λ=λ̂,π∗=0

High-state output:

yH|λ=λ̄,π∗=π̂∗ =
κ (β(1− pH)− (1− β)C)

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

+
βκ(1− pH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=
βκ(1− pH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=yH|λ=λ̂,π∗=0

Low-state inflation:

πL|λ=λ̄,π∗=π̂∗ =
Dκ2

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− κ2 + λ̄(1− βpH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− κ2 + λ̂(1− βpH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=πL|λ=λ̂,π∗=0
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Low-state output:

yL|λ=λ̄,π∗=π̂∗ =
κ(βpL − 1− (1− β)C)

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− κ2(1− βpL) + λ̄(1− β) (1− βpL + β(1− pH))

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− κ2(1− βpL) + λ̂(1− β) (1− βpL + β(1− pH))

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=yL|λ=λ̂,π∗=0

A.12 Numerical example

This subsection provides a numerical example of how allocations and welfare depend on the central

bank’s inflation target π∗. The parameterisation follows Table 1. In addition, pL = 0.9375 and

pH = 0.98. In this particular example, the optimal inflation target is negative.

Figure 14: Allocations and welfare as a function of π∗
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Note: Dash-dotted vertical lines indicate the case where the central bank has the same objective function as society

as a whole, i.e. π∗ = 0. Solid vertical lines indicate the welfare-maximizing inflation target. The welfare gain/loss is

expressed relative to the welfare level achieved when the inflation target is zero (in percent).
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B Fundamental equilibrium in the model without fiscal policy

Here we formally derive those results for the fundamental equilibrium in the model with the two-

state natural real rate shock that are not provided in Nakata and Schmidt (2018).

B.1 Allocations and prices

For the sake of completeness, we restate the policy functions associated with the fundamental

equilibrium when π∗ = 0

πL = −
κ2 + λ(1− βpfH)

Ef
rnL < 0 (B.1)

yL = −
(1− βpfL)κ2 + (1− β)(1− βpfL + β(1− pfH))λ

κEf
rnL < 0 (B.2)

iL = 0 (B.3)

πH = −
βλ(1− pfH)

Ef
rnL < 0 (B.4)

yH =
βκ(1− pfH)

Ef
rnL > 0 (B.5)

iH = rn −
(1− pfH)

Ef

(
(κ2 + λ(1− β))(1− βpfL + β(1− pfH))

κσ
+ κ2 + λ

)
rnL > 0, (B.6)

where Ef = βλ(1 − pfH) −
(
κ2 + λ(1− β)

) [1−pfL
κσ

(
1− βpfL + β(1− pfH

)
− pfL

]
< 0 in the funda-

mental equilibrium (see Nakata and Schmidt, 2018).

B.2 Effect of a marginal increase in pfL

Assuming π∗ = 0, it holds

∂πL

∂pfL
=

(
κ2 + λ(1− βpfH)

)
(κ2 + λ(1− β))

[
1 + (κσ)−1

(
1 + β − 2βpfL + β(1− pfH)

)]
(Ef )2

rnL < 0

∂yL

∂pfL
=

[
βλ(1− pfH) + (κ2 + λ(1− β))

(
1 +

β(1− βpfL)(1− pfL) + (1− βpfL + β(1− pfH))(1− β)

κσ

)

+ (1− β)βλ(1− pfH)
1 + β − 2βpfL + β(1− pfH)

κσ

]
κ2 + λ(1− β)

(Ef )2
rnL < 0
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and

∂πH

∂pfL
=
βλ(1− pfH)(κ2 + λ(1− β))

[
1 + (κσ)−1

(
1 + β − 2βpfL + β(1− pfH)

)]
(Ef )2

rnL ≤ 0

∂yH

∂pfL
=−

βκ(1− pfH)(κ2 + λ(1− β))
[
1 + (κσ)−1

(
1 + β − 2βpfL + β(1− pfH)

)]
(Ef )2

rnL ≥ 0

B.3 Effect of a marginal increase in pfH

Assuming π∗ = 0, it holds

∂πL

∂pfH
=

(1− pfL)β
(
κ2 + λ(1− β)

)
κσ(Ef )2

[
κ2 −

(
κσ + β(1− pfL)

)
λ
]
rnL

∂yL

∂pfH
=

(1− pfL)β
(
κ2 + λ(1− β)

)
κ(Ef )2

[
κ2(1− βpfL)

κσ
− λ

]
rnL

∂πH

∂pfH
=
βλ
(
κ2 + λ(1− β)

)
(Ef )2

[
pfL −

1− pfL
κσ

(1− βpfL)

]
rnL

∂yH

∂pfH
=−

βκ
(
κ2 + λ(1− β)

)
(Ef )2

[
pfL −

1− pfL
κσ

(1− βpfL)

]
rnL

B.4 Effect of a marginal increase in κ on low-state allocations/prices

Assuming π∗ = 0, it holds

∂πL
∂κ

=−
2βκλ(1− pfH)(1 + Cf )−

(
κ2 + λ(1− β + β(1− pfH))

) (
κ2 + λ(1− β)

) 1−pfL
κσ

1−βpfL+β(1−pfH)
κ

(Ef )2
rnL

(B.7)

∂yL
∂κ

=− 1

(κ(Ef ))2

[
βλκ2(1− pfL)(1− pfH) + 2βλκ2(1− β)(1− pfH)Cf −

(
κ2 + λ(1− β)

)2
(1− βpfL)pfL

− λ2(1− β)2β(1− pfH)pfL − (1− βpfL + β(1− pfH))(1− β)βλ(1− pfH)
]
rn (B.8)

where Cf =
1−pfL
κσ

(
1− βpfL + β(1− pfH)

)
−pfL > 0 in the fundamental equilibrium (see Nakata and

Schmidt, 2018).

For pfH = 1, we get

∂πL
∂κ

=

(
κ2 + λ(1− β)

)2
(1− pfL)(1− βpfL)

(κ(Ef ))2σ
rn > 0 (B.9)

∂yL
∂κ

=

(
κ2 + λ(1− β)

)2
(1− βpfL)pfL

(κ(Ef ))2
rn > 0 (B.10)
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C Policy problem in the model with fiscal policy

At the beginning of time, society delegates monetary and fiscal policy to a discretionary policy-

maker. The objective function of the policymaker is given by

VMF
t = −1

2
Et

∞∑
j=0

βj
(
π2
t+j + λ̄x2

t+j + λgg
2
t+j

)
, (C.1)

where for λg = λ̄g, the policymaker’s objective function coincides with society’s objective function.

The optimization problem of a generic policymaker acting under discretion is as follows. Each

period t, she chooses the inflation rate, the modified output gap, government spending, and the

nominal interest rate to maximize its objective function (C.1) subject to the behavioral constraints

of the private sector and the lower bound constraint, with the policy functions at time t+ 1 taken

as given. Since the model features no endogenous state variable, the central bank solves a sequence

of static optimization problems

max
πt,xt,gt,it

−1

2

(
π2
t + λ̄x2

t + λgg
2
t

)
(C.2)

subject to

πt = κxt + βEtπt+1 (C.3)

xt = Etxt+1 + (1− Γ)(gt − gt+1)− σ (it − Etπt+1 − rnt ) (C.4)

it ≥ 0 (C.5)

The consolidated first order conditions are

(κπt + λ̄xt)it = 0 (C.6)

κπt + λ̄xt ≤ 0 (C.7)

it ≥ 0 (C.8)

λggt + (1− Γ)(κπt + λ̄xt) = 0 (C.9)

together with the private sector behavioral constraints.

D Sunspot equilibrium in the model with fiscal policy

D.1 Proof of Proposition 11

To proof Proposition 11 on the necessary and sufficient condition for existence of the sunspot equi-

librium, it is useful to proceed in three steps. Each step is associated with an auxiliary proposition.
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Let

C̃ := λgC +
(
κ2 + λ̄(1− βpL)

) (1− Γ)2

κσ
(1− pL), (D.1)

D̃ := λgD − βλ̄
(1− Γ)2

κσ
(1− pL)2, (D.2)

and

Ẽ :=AD̃ −BC̃

=λgE −
(1− Γ)2(1− pL)

κσ

(
κ2 + λ̄(1− β)

) [
κ2 + λ̄(1− βpL + β(1− pH))

]
, (D.3)

where A,B,C,D and E are defined in (A.1)–(A.5).

Proposition D.1 There exists a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the system of

linear equations (33)–(40).

Proof: Rearranging the system of equations (33)–(40) and eliminating xH , iH , gH , xL, iL and gL,

we obtain two unknowns for πH and πL in two equations

[
A B

C̃ D̃

][
πL

πH

]
=

[
0

λgr
n

]
. (D.4)

For what follows, it is useful to show that Ẽ = 0 is inconsistent with existence of the sunspot

equilibrium. Since B > 0, we can always write πH = −A/BπL. Plugging this into C̃πL + D̃πH =

λgr
n and multiplying both sides by B, we get −ẼπL = Bλgr

n. Since the right-hand side of this

equation is strictly positive for λg > 0, Ẽ = 0 is inconsistent with the existence of the sunspot

equilibrium. Hence, we can invert the matrix on the left-hand-side of (D.4)

[
πL

πH

]
=

1

AD̃ −BC̃

[
D̃ −B
−C̃ A

][
0

λgr
n

]
. (D.5)

Thus,

πH =
A

Ẽ
λgr

n (D.6)

and

πL =
−B
Ẽ
λgr

n. (D.7)

From the Phillips curves in both states, we obtain

xH =
βκ(1− pH)

Ẽ
λgr

n (D.8)

51



and

xL = −(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ̄

κẼ
λgr

n. (D.9)

Using the target criterion for fiscal policy in the low-confidence state (39), we obtain

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

rn. (D.10)

Using the consumption Euler equation in the high-confidence state (33), we obtain

iH =

[
1− 1− pH

Ẽ

(
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpL + β(1− pH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpL + β(1− pH))

))]
rn. (D.11)

Finally, from equations (35) and (40), we have gH = 0, and iL = 0.

Proposition D.2 Suppose equations (33)–(40) are satisfied. Then λ̄xL + κπL < 0 if and only if

Ẽ > 0.

Proof: Using (D.7) and (D.9), we have

λ̄xL + κπL = −
(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

λgr
n (D.12)

Notice that λgr
n > 0 and

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
> 0. Thus, if λ̄xL+κπL <

0, then Ẽ > 0. Similarly, if Ẽ > 0, then λ̄xL + κπL < 0.

Proposition D.3 Suppose equations (33)–(40) are satisfied and Ẽ > 0. Then iH > 0 if and only if

λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0, where Ω(·) is defined

in (A.15).

Proof: First, notice that iH is given by

iH =
1− pH
σ

(xL − xH + (1− Γ)(gH − gL)) + pHπH + (1− pH)πL + rn

=

(
κ2 + λ̄(1− β)

)
rn

Ẽ

[
λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1− pL + 1− pL

κσ

(
κ2 + λ̄(1− βpL + β(1− pH))

)]
,

(D.13)
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where in the second row we made use of (D.6)–(D.10). Notice also that
(κ2+λ̄(1−β))rn

Ẽ
> 0. Thus, if

λgΩ(pL, pH , κ, σ, β)−(1−Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0 then iH > 0. Similarly,

if iH > 0 then λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0.

We are now ready to proof Proposition 11. For notational convenience, define

Ω̃(pL, pH , κ, σ, β,Γ, λg) = λgΩ(pL, pH , κ, σ, β)−(1−Γ)2 1− pL + 1− pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
(D.14)

Proof of “if” part: Suppose that Ω̃(·) > 0. According to Proposition D.1 there exists a vector
{xH , πH , iH , gH , xL, πL, iL, gL} that solves equations (33)–(40). Notice that

(κ2 + λ̄(1− β))Ω̃(·) =Ẽ − (1− pH)

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpL + β(1− pH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ(1− β))

(
κ2 + λ(1− βpL + β(1− pH))

) ]
.

Hence, Ω̃(·) > 0 implies Ẽ > 0. According to Proposition D.2, Ẽ > 0 implies λ̄xL + κπL < 0.

According to Proposition D.3, given Ẽ > 0, Ω̃(·) > 0 implies iH > 0.

Proof of “only if” part: Suppose that the vector {xH , πH , iH , gH , xL, πL, iL, gL} solves (33)–(40),

and satisfies λ̄xL + κπL < 0 and iH > 0. According to Proposition D.2, λ̄xL + κπL < 0 implies

Ẽ > 0. According to Proposition D.3, Ẽ > 0 and iH > 0 imply Ω̃(·) > 0.

D.2 Proof of Proposition 12

In the sunspot equilibrium, allocations and prices are given by
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πL =− κ2 + λ̄(1− βpH)

Ẽ
λgr

n < 0 (D.15)

xL =− (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ̄

κẼ
λgr

n < 0 (D.16)

iL =0 (D.17)

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

rn > 0 (D.18)

πH =− βλ̄(1− pH)

Ẽ
λgr

n < 0 (D.19)

xH =
βκ(1− pH)

Ẽ
λgr

n > 0 (D.20)

iH =

[
1− 1− pH

Ẽ

(
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpL + β(1− pH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpL + β(1− pH))

))]
rn > 0 (D.21)

gH =0, (D.22)

where Ẽ > 0 is defined in equation (D.3).

D.3 Proof of Proposition 13

In the sunspot equilibrium, it holds

∂πL
∂λg

=
(κ2 + λ̄(1− βpH))(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn > 0

∂xL
∂λg

=
[
κ2(1− βpL) + λ̄(1− β)(1− βpL + β(1− pH))

]
×

(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))
[
κ2 + λ̄(1− βpL + β(1− pH))

]
κẼ2

rn > 0

∂gL
λg

= −
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ2

Ern < 0

and

∂πH
∂λg

=
βλ̄(1− pH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn > 0

∂xH
∂λg

= −
βκ(1− pH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn < 0

54



D.4 Numerical example

This subsection provides a numerical example of how allocations and welfare depend on the relative

weight that the policymaker’s objective function puts on government spending stabilization λg. The

parameterisation follows Table 1 except that we account for a non-zero steady-state government

spending to output ratio of 0.2, which implies that the inverse of the elasticity of the marginal

utility of private consumption with respect to output σ becomes 0.4. The inverse of the elasticity

of the marginal utility of public consumption with respect to output ν is set to 0.1, as in Section

6. This implies λ̄g = 0.0082. In addition, pL = 0.9375 and pH = 0.98.

Figure 15: Allocations and welfare as a function of λg
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E Fundamental equilibrium in the model with fiscal policy

E.1 Existence of the fundamental equilibrium

Proposition 15 The fundamental equilibrium in the model with government consumption and a

two-state natural real rate shock exists if and only if

Ẽf <(1− pfH)
rnL
rn

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
(E.1)

where Ẽf ≡ λgEf −
(1−Γ)2(1−pfL)

κσ

(
κ2 + λ̄(1− β)

) [
κ2 + λ̄(1− βpfL + β(1− pfH))

]
.

To proof Proposition 15, we proceed again in three steps. Each step is associated with an

auxiliary proposition.

Proposition E.1 There exists a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the system of

linear equations (35), (36), (39), (40), and (43)–(46).

Proof: Let

Af := −βλ̄(1− pfH), (E.2)

Bf := κ2 + λ̄(1− βpfH), (E.3)

Cf :=
(1− pfL)

σκ
(1− βpfL + β(1− pfH))− pfL, (E.4)

Df := −
(1− pfL)

σκ
(1− βpfL + β(1− pfH))− (1− pfL) = −1− Cf , (E.5)

and

Ef := AfDf −BfCf . (E.6)

Rearranging the system of equations and eliminating xH , iH , gH , xL, iL and gL, we obtain two

unknowns for πH and πL in two equations

[
Af Bf

C̃f D̃f

][
πL

πH

]
=

[
0

λgr
n
L

]
, (E.7)

where

C̃f := λgC
f +

(
κ2 + λ̄(1− βpfL)

) (1− Γ)2

κσ
(1− pfL), (E.8)

D̃f := λgD
f − βλ̄(1− Γ)2

κσ
(1− pfL)2. (E.9)
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Define Ẽf := Af D̃f −Bf C̃f . For what follows, it is useful to show that Ẽf = 0 is inconsistent

with existence of the fundamental equilibrium. Since B > 0, we can always write πH = −Af/BfπL.

Plugging this into C̃fπL + D̃fπH = λgr
n
L and multiplying both sides by Bf , we get −ẼfπL =

Bfλgr
n
L. Since the right-hand side of this equation is strictly negative for λg > 0, Ẽf = 0 is

inconsistent with the existence of the fundamental equilibrium. Hence, we can invert the matrix

on the left-hand-side of (E.7)

[
πL

πH

]
=

1

Af D̃f −Bf C̃f

[
D̃f −Bf

−C̃f Af

][
0

λgr
n
L

]
. (E.10)

Thus,

πH =
Af

Ẽf
λgr

n
L (E.11)

and

πL =
−Bf

Ẽf
λgr

n
L. (E.12)

From the Phillips curves in both states, we obtain

xH =
βκ(1− pfH)

Ẽf
λgr

n
L (E.13)

and

xL = −
(1− βpfL)κ2 + (1− β)(1− βpfL + β(1− pfH))λ̄

κẼf
λgr

n
L. (E.14)

Using the target criterion for fiscal policy in the low-confidence state (39), we obtain

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

rnL. (E.15)

Using the consumption Euler equation in the high-confidence state (43), we obtain

iH =rn −
1− pfH
Ẽf

(
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

))
rnL. (E.16)

Finally, from equations (35) and (40), we have gH = 0, and iL = 0.

Proposition E.2 Suppose equations (35), (36), (39), (40), and (43)–(46) are satisfied. Then

λ̄xL + κπL < 0 if and only if Ẽf < 0.
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Proof: Using (E.12) and (E.14), we have

λ̄xL + κπL = −

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

λgr
n
L (E.17)

Notice that λgr
n
L < 0 and

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
> 0. Thus, if λ̄xL +

κπL < 0, then Ẽf < 0. Similarly, if Ẽf < 0, then λ̄xL + κπL < 0.

Proposition E.3 Suppose equations (35), (36), (39), (40), and (43)–(46) are satisfied and Ẽf <

0. Then iH > 0 if and only if Ẽf < Ẽ
f
,

where Ẽ
f ≡ (1−pfH)

rnL
rn

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1−βpfL+β(1−pfH)

κσ

)
+ (1−Γ)2

κσ (κ2+λ̄(1−β))
(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
.

Proof: First, notice that iH is given by

iH =
1− pfH
σ

(xL − xH + (1− Γ)(gH − gL)) + pfHπH + (1− pfH)πL + rn

=rn −
1− pfH
Ẽf

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
rnL, (E.18)

The term in square brackets is strictly positive, rn > 0, rnL < 0 and Ẽf < 0. Thus, if Ẽf < Ẽ
f

then iH > 0. Similarly, if iH > 0 then Ẽf < Ẽ
f
.

We are now ready to proof Proposition 15.

Proof of “if” part: Suppose that Ẽf < Ẽ
f
. According to Proposition E.1 there exists a vector

{xH , πH , iH , gH , xL, πL, iL, gL} that solves equations (35), (36), (39), (40), and (43)–(46). Notice

that Ẽ
f
< 0. Hence, Ẽf < Ẽ

f
implies Ẽf < 0. According to Proposition E.2, Ẽf < 0 implies

λ̄xL + κπL < 0. According to Proposition E.3, given Ẽf < 0, Ẽf < Ẽ
f

implies iH > 0.

Proof of “only if” part: Suppose that the vector {xH , πH , iH , gH , xL, πL, iL, gL} solves (35),

(36), (39), (40), (43)–(46), and satisfies λ̄xL + κπL < 0 and iH > 0. According to Proposition E.2,

λ̄xL + κπL < 0 implies Ẽf < 0. According to Proposition E.3, Ẽf < 0 and iH > 0 imply Ẽf < Ẽ
f
.

E.2 Allocations and prices

In the fundamental equilibrium, allocations and prices are given by:
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πL =−
κ2 + λ̄(1− βpfH)

Ẽf
λgr

n
L < 0 (E.19)

xL =−
(1− βpfL)κ2 + (1− β)(1− βpfL + β(1− pfH))λ̄

κẼf
λgr

n
L < 0 (E.20)

iL =0 (E.21)

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

rnL > 0 (E.22)

πH =−
βλ̄(1− pfH)

Ẽf
λgr

n
L < 0 (E.23)

xH =
βκ(1− pfH)

Ẽf
λgr

n
L > 0 (E.24)

iH =rn −
1− pfH
Ẽf

(
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

))
rnL > 0 (E.25)

gH =0 (E.26)

E.3 Effects of a marginal change in λg

The partial derivatives of the policy functions with respect to λg are

∂πL
∂λg

=
(κ2 + λ̄(1− βpfH))(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL < 0

∂xL
∂λg

=
[
κ2(1− βpfL) + λ̄(1− β)(1− βpfL + β(1− pfH))

]
×

(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))
[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
κ(Ẽf )2

rnL < 0

∂gL
λg

= −
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κ(Ẽf )2

EfrnL,
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and

∂πH
∂λg

=
βλ̄(1− pfH)(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL < 0

∂xH
∂λg

= −
βκ(1− pfH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL > 0
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