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Abstract

I implement fully optimal monetary policy under heterogeneous expectations as in Di Bartolomeo

et al. (2016) by deriving an explicit interest rate rule under commitment. Implementation requires

the derivation of agent’s consumption decisions that incorporate the higher-order beliefs assumption

of Branch and McGough (2009). As a result, ”rational” agents are not sophisticated enough to have

model-consistent individual consumption expectations, as assumed in Di Bartolomeo et al. (2016),

even though they forecast aggregate variables correctly on average. Further, I show that the optimal

interest rate rule yields substantial welfare gains compared to a rule that is derived from a conventional

inflation-targeting objective as in Gasteiger (2014). The implementation of the non-optimal inflation-

targeting rule already requires an increase of 14.5 percent of steady-state consumption to compensate

for the higher welfare losses relative to the optimal interest rate rule when only ten percent of the

population form (naive) backward-looking expectations. Welfare gains become substantially high

when the underlying economy features a high degree of bounded rationality. Finally, I illustrate that

consumption dispersion increases with the central bank’s aggressiveness towards inflation.
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1 Introduction

The New Keynesian model emphasizes the ability of monetary policy to stabilize the macroeconomy by

taking into account agent’s expectations. However, optimal monetary policy is usually studied within

a framework that assumes agents to form their expectations rationally (Clarida et al., 1999; Woodford,

1999; McCallum, 1999). Yet, econometric studies based on inflation expectation surveys show that the

data favors heterogeneous expectations with a certain degree of bounded rationality (Branch, 2004, 2007;

Pfajfar and Santoro, 2010). Starting from this observation, several New Keynesian models were designed

that include heterogeneous expectations (Branch and McGough, 2009, 2010; De Grauwe, 2011; Massaro,

2013; Hommes et al., 2015).

A natural follow-up question is: How should central banks set interest rates optimally given its knowl-

edge about the heterogeneity in expectations? To answer this question I derive an optimal interest rate

rule under commitment based on the Branch and McGough (2009) framework and a model-consistent

welfare criterion following Di Bartolomeo et al. (2016). To describe the micro level explicitly, I derive

consumption Euler equations that adequately account for the assumption of Branch and McGough (2009)

about higher-order beliefs. More specifically, the underlying model of this paper incorporates two types

of agents. The more sophisticated agents, that I call ”rational forecasters”, are able to forecast aggre-

gate variables consistent with the model predictions but are not smart enough to understand the micro

level fully. In contrast, bounded rational forecasters use a simple backward-looking heuristic instead for

forecasting. Such backward-looking heuristics are consistent with evidence from laboratory experiments

(Assenza et al., 2014; Pfajfar and Žakelj, 2016).

While optimal monetary policy under homogeneous rational expectations is well known and exten-

sively studied, the strand of literature dealing with monetary policy under heterogeneous expectations is

rather new. Recent advances in the literature are made by Gasteiger (2014), Gasteiger (2018), Di Bar-

tolomeo et al. (2016) and Beqiraj et al. (2017). Beqiraj et al. (2017) investigate fully optimal monetary

policy under heterogeneous expectations based on the framework developed in Massaro (2013) that in-

cludes agents that forecast over all future periods up to infinity. On the other hand, Gasteiger (2014),

Gasteiger (2018) and Di Bartolomeo et al. (2016) follow the Euler-equation-learning approach of Branch

and McGough (2009). Gasteiger (2014) and Gasteiger (2018) explore interest rate rules derived from an

ad-hoc inflation-targeting objective while Di Bartolomeo et al. (2016) provide an extension based on a

model-consistent central bank objective.

Although Di Bartolomeo et al. (2016) implicitly assume expectations-based reaction functions, they
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do not derive them. Thus, the literature has so far not provided a fully optimal interest rate rule under

heterogeneous expectations based on the Branch and McGough (2009) model. Deriving an interest

rate rule is important as well-grounded policy advice does require an actual rule for policymakers to

apply. Further, such policy rules provide an intuitive way of identifying which variables are important in

determining the interest rate and how their influence differs especially with the degree of heterogeneity.

I will focus on the commitment case as it is typically superior to discretion.

Additionally, I explore the role of the higher-order beliefs assumption of Branch and McGough (2009)

for agent’s individual consumption decisions. Consumption decisions have to be made explicit as the

central bank’s objective function introduced by Di Bartolomeo et al. (2016) depends on consumption

dispersion. This approach allows me to clarify the properties of the expectations operator, ERt , of

”rational” forecasters in Branch and McGough (2009). It is assumed that rational forecasters, by using

ERt , predict aggregate variables consistent with the model predictions which can, however, not be the case

for expectations about the distribution of individual consumption. This is a straightforward consequence

of the higher-order beliefs assumption which puts a particular (non-rational) structure on the agents

believe about other agents’ individual consumption expectations. In particular, all agents believe that

all other agents form the same expectations about their individual consumption as they do. Hence, even

”rational forecasters” are not smart enough to sophisticatedly forecast individual consumption. The final

consumption equations only depend on aggregate variables and can, therefore, be used to substitute for

individual consumption in the optimal interest rate rule.

However, if an Euler equation with model-consistent individual consumption expectations as in

Di Bartolomeo et al. (2016) is applied, the first-order conditions of the central bank problem under

commitment can only be reduced to a second-order difference equation in one of the Lagrange-multipliers

to which the solution is fairly complicated and exponentially depends on time. Consequently, a mean-

ingful interest rate rule under commitment in this case cannot be derived. Further, it would not be

possible to substitute for individual consumption so that practical implementation would require indi-

vidual consumption to be observable. However, applying the consumption equation that appropriately

accounts for the higher-order beliefs assumption makes the derivation of a meaningful interest rate rule

under commitment possible.

Moreover, I compare the optimal interest rate rule to a micro-founded version of the policy rule in

Gasteiger (2014). As already indicated, the author derives an interest rate rule under commitment that

recognizes the heterogeneity in expectations in the private sector equations but is optimized under a

conventional ad-hoc inflation-targeting objective. The resulting interest rate rule is sub-optimal but also
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much simpler than the rule derived in this paper. While it is straight-forward that the fully optimal rule

must yield lower welfare losses than the non-optimal rule derived from the inflation-targeting objective,

it is not clear by how much.

The welfare analysis shows that the optimal interest rate rule generates substantial welfare gains. The

implementation of the non-optimal inflation-targeting rule already requires an increase of 14.5 percent

of steady-state consumption to compensate for the higher welfare losses relative to the optimal interest

rate rule when only ten percent of the population form (naive) backward-looking expectations. The

welfare gains of the optimal interest rate rule crucially depend on the relative fraction of agent types.

The optimal interest rate rule performs relatively better the higher the fraction of bounded rational

forecasters. However, by numerically optimizing the weights on inflation and the shock with respect to

the model-consistent welfare criterion in the less complicated inflation-targeting rule gives a relatively

good approximation of the fully optimal policy already.

Finally, I find that consumption dispersion is not necessarily lower under the optimal rule compared

the non-optimal inflation-targeting rule, even though the former explicitly incorporates consumption het-

erogeneity as opposed to the latter. This is because consumption dispersion increases with the central

bank’s aggressiveness towards inflation, as rational and bounded rational forecasters’ consumption de-

cisions become more unequal for larger increases in the policy rate. As a consequence, there is also a

(local) trade-off between minimizing welfare losses and reducing consumption dispersion.

The remainder of the paper is organized as follows. The underlying model including the modified

consumption rules are presented in Section 2. The optimal interest rate rule under heterogeneous ex-

pectations is derived in the subsequent section. Section 4 shows the impulse responses under optimal

monetary policy with an emphasis on the micro-behavior followed by the welfare analysis in Section 5.

Finally, the conclusion is given in Section 6.

2 Model

In this section, I introduce the underlying model and derive consumption decision that incorporate the

higher-order beliefs assumption of Branch and McGough (2009). It is assumed that the economy is

populated by an exogenous fraction α of rational forecasters (R) which have rational (model-consistent)

expectations with respect to aggregate variables and a fraction 1 − α of boundedly rational forecasters

(B) that employ a simple backward-looking heuristic. The general forecasting rule of bounded rational

forecasters takes the form of EBt xt+1 = θ2xt−1 while rational forecasters simply use the expected value,
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i.e. ERt xt+1 = Etxt+1, for forecasting the output gap and inflation. Backward-looking expectations for

θ < 1 are called steady-state-reverting, for θ = 1 naive and for θ > 1 trend-setting. Steady-state-reverting

expectations constitute a stabilizing force while trend-setting expectations imply a further amplification

of macroeconomic variables.

Assuming perfect consumption insurance within each of the two agent groups the model can be

expressed in terms of two representative agents (RA). Both RA’s maximize their individual expected

discounted lifetime utility Eτt
∑∞

t=0 β
tUt given their subjective expectations Eτt with τ ∈ {R,B}. How-

ever, as in Branch and McGough (2009) agents follow Euler equation learning, i.e. they disregard their

intertemporal budget constraint as an optimality condition and solely base their consumption decision

on the variational intuition of the Euler equation. The period utility function is of CES-form and is given

by

Ut =
(Cτt )1− 1

σ

1− 1
σ

− (Y τ
t )1+η

1 + η
(1)

with Cτt being consumption of type τ , Y τ
t the output that each RA τ produces, 1

σ the coefficient of

relative risk aversion and η the elasticity of marginal disutility of producing output. Agents must satisfy

their real budget constraint

Cτt +Bτ
t =

1 + it−1

Πt
Bτ
t−1 + Ψτ

t (2)

with Bτ
t being real bond holdings, it−1 the nominal interest rate in t− 1, Πt gross inflation and Ψτ

t real

income of agent τ .

I will now turn to the derivation of agent’s consumption decisions. All agents in this economy are

assumed to believe that all other agents will form the same expectations as they do. This is the higher-

order beliefs assumption A6 in Branch and McGough (2009). The authors explicitly emphasize that this

assumption is necessary for aggregation. This assumption, however, also implies that ”rational” forecaster

are not fully rational in the conventional sense of the rational expectations hypothesis and therefore

cannot have rational individual consumption expectations, as I will explicitly show below. Assuming

rational forecaster to possess rational individual consumption expectation implies too much rationality

to be consistent with the necessary higher-order beliefs assumption, as is the case in Di Bartolomeo

et al. (2016). Incorporating this assumptions into the consumption decisions of agents is crucial as a

meaningful interest rate rule under commitment cannot be derived otherwise (see Appendix C).

Further, the central bank’s welfare criterion can be re-written using market clearing in a way that

it only depends on the consumption decision of rational forecasters. Hence, for now I focus on the

5



consumption Euler equation for τ = R which is given by

(CRt )−
1
σ = βERt

[
(CRt+1)−

1
σ

1 + it
Πt+1

]
. (3)

Log-linearizing (3) gives

cRt = ERt c
R
t+1 − σ(it − ERt πt+1) (4)

where lower case letters indicate log-deviations from steady state. Forward iteration yields

cRt = ERt c
R
∞ − σ

∞∑
k=0

(it+k − ERt πt+k+1). (5)

It is assumed that rational forecasters know that market clearing yt = αcRt + (1 − α)cBt holds and that

bounded rational forecasters will also satisfy their consumption Euler equation. Writing market clearing

one period forward and inserting equation (5), and equivalently the forward-iterated consumption Euler

equation for bounded rational forecasters, gives

ERt yt+1 = ERt

[
α(ERt c

R
∞ − σERt+1

∞∑
k=1

(it+k − πt+k+1))

+ (1− α)(EBt c
B
∞ − σEBt+1

∞∑
k=1

(it+k − πt+k+1))
]
. (6)

Note that (6) contains higher-order beliefs, i.e. beliefs of rational forecasters ERt about the beliefs of

bounded rational forecasters EBt and EBt+1. In order to arrive at the IS curve that has the same functional

form as in the model under homogeneous rational expectations, Branch and McGough (2009) need to

impose a specific (non-rational) structure on higher-order beliefs on consumption. This assumption

states that agent’s believe that all other agents will forecast their individual consumption in the same

way they do. Mathematically and in the context of rational forecasters: ERt E
B
t+kct+l = ERt ct+l with

l > k. Hence, bounded rational expectations just drop out under this assumption. Further, note that

making an alternative assumption, e.g. allowing rational forecasters to be fully rational, would result in

a different system of aggregate equations (see Hagenhoff and Lustenhouwer, 2019).

Using the higher-order beliefs assumption and the law of iterated expectations at the individual level

yields

ERt yt+1 = ERt y∞ − σ
∞∑
k=1

(it+k − ERt πt+k+1). (7)

It becomes obvious that (7) cannot hold under conventional rational expectations, i.e. when ERt = Et
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would hold, as bounded rational expectations, EBt and EBt+1, would not drop out and thus show up in

(7). Mathematically written: EtE
B
t = EBt and EtE

B
t+1 = EBt+1, which would contradict the higher-order

beliefs assumption of Branch and McGough (2009). Equation (7) would only hold under conventional

rational expectations when boundedly rational forecasters were absent, i.e. under homogeneous rational

expectations. In this case (6) would collapse to (7) without any further assumption.

It follows that rational forecasters in this model are not smart enough to have model-consistent

expectations with respect to the distribution of individual consumption when there is heterogeneity.

Thus, assuming model-consistent individual consumption expectations in the Euler equation of rational

forecaster as in Di Bartolomeo et al. (2016) is inconsistent with the underlying framework.

Using (7) to replace the infinite sum in (5), one obtains

cRt = ERt yt+1 + ERt (cR∞ − y∞)− σ(it − ERt πt+1) (8)

which is the true consumption decision of rational forecasters satisfying the higher-order beliefs assump-

tion from above.

Equation (8) could have been derived for the general case of agent τ as the assumption on higher-order

beliefs holds for both agent types. In the general case (8) reads

cτt = Eτt yt+1 + Eτt (cτ∞ − y∞)− σ(it − Eτt πt+1). (9)

Still, it has to be defined what Eτt (cτ∞ − y∞) is. In Branch and McGough (2009) these terms drop

out when aggregating (9) and when the assumption that agents agree on expected differences in expected

limiting consumption is used (A7 in Branch and McGough (2009)). An assumption consistent with A7 in

Branch and McGough (2009) is to assume that agents believe to be back in steady state in the long-run.

In this case Eτt (cτ∞ − y∞) = 0 holds and thus (9) becomes

cτt = Eτt yt+1 − σ(it − Eτt πt+1). (10)

From (10) one can infer that agents only forecast aggregate variables when making consumption

decisions. Note that, as rational forecasters have rational expectations with respect to aggregate variables,

ERt can be replaced by Et in the consumption decision of rational forecasters.
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Using goods market clearing and (10) the IS curve is given by

yt = αEtyt+1 + (1− α)θ2yt−1 − σ(it − αEtπt+1 − (1− α)θ2πt−1). (11)

Further, all agents produce output under monopolistic competition. Calvo pricing is assumed where

a fixed fraction ξp of agents cannot reset their prices in a given period (Calvo, 1983). Price dispersion

arises because, first, optimal prices are different between expectation types since they depend on expected

future marginal costs and, second, they differ within each type due to the fact that only a fraction of

firms can reset prices. Thus, the Phillips-curve can be derived as

πt = αβEtπt+1 + (1− α)βθ2πt−1 + κyt + et (12)

with κ =
(1−ξp)(1−βξp)(η+σ−1)

ξp(1+εη) where ε is the price elasticity of demand for a differentiated good. As in

Di Bartolomeo et al. (2016) the Phillips curve is augmented with a random cost-push shock et.
1

Note that inflation and output exhibit some degree of persistence due to the presence of backward-

looking expectations. The degree of persistence depends on the fraction of bounded rational forecasters 1−

α and their forecasting coefficient θ. The higher the two parameters the higher the degree of persistence.

Further, as rational forecasters use the aggregate equations (11) and (12) to forecast output and inflation,

they are aware of this persistence. Hence, even if a transitory cost-push shock hits the economy, rational

forecasters will expect inflation to be above the steady state in the next period. This non-zero inflation

expectation then feeds back into current inflation via (12) and thus causes an amplification of inflation

(and via the central bank in output). This amplification mechanism is strongest for intermediate values of

α as already investigated by Gasteiger (2018). The reason is that for large values of α only a minority of

agents is backward-looking and thus persistence becomes less pronounced while for low values of α there

are not enough rational forecasters through which the amplification works. Hence, this model associates

an amplification of macroeconomic variables with the presence of bounded rational agents.

The model is calibrated as in Di Bartolomeo et al. (2016) for the US economy following Rotemberg

and Woodford (1997) with the time unit being one quarter.

α = 0.7 θ = 1 β = 0.99 σ = 6.25 ε = 7.84 η = 0.47 ξp = 0.66

Table 1: Baseline calibration

1This shock can, for instance, be micro-founded by assuming an exogenous time-varying wage mark-up as in Gaĺı (2015).
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3 An optimal interest rate rule

In this section I derive, first, an optimal interest rate rule from a model-consistent welfare criterion and,

second, a non-optimal rule under a conventional inflation-targeting objective as in Gasteiger (2014).

3.1 Loss functions

As in Gasteiger (2014), Gasteiger (2018) and Di Bartolomeo et al. (2016) a paternalistic central bank is

assumed, i.e. the central bank’s aim is to maximize social welfare. I follow the approach of Di Bartolomeo

et al. (2016) where the central bank exploits its detailed knowledge about the heterogeneity in expectations

and minimizes a social welfare loss that is a second-order approximation of household utility (1). The

intertemporal second-order approximated aggregate welfare loss can be derived as

W = − C̄UC
2

∞∑
t=0

βtLt + t.i.p. (13)

with

Lt =

(
η +

1

σ

)
y2
t + (ε2η)vari(pt(i)) +

1

σ
vari(ct(i)). (14)

and

vari(pt(i)) = δπ2
t +

δξp(1− α)

α

[
πt − βθ2πt−1 − κ

cBt + ησyt
1 + ησ

]2

(15)

vari(ct(i)) = α(1− α)(cRt − cBt )2. (16)

where δ =
ξp

(1−βξp)(1−ξp) is a measure of price stickiness.

Using market clearing to eliminate cBt , (15) and (16), (14) can be rewritten as

Lt =Γ1y
2
t + Γ2π

2
t + Γ3π

2
t−1 + Γ4(cRt )2 (17)

+Γ5ytc
R
t + Γ6πtc

R
t + Γ7πt−1c

R
t + Γ8πtπt−1 + Γ9πtyt + Γ10πt−1yt

where the Γx-coefficients are given in the Appendix B.1.

Under homogeneous rational expectations, i.e for α = 1, price dispersion reduces to vari(pt(i)) = δπ2
t

and vari(ct(i)) to zero. Hence, in this case (14) reduces to

Lα=1
t =

(
η +

1

σ

)
y2
t + ε2ηδπ2

t . (18)
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Equation (14) is called the model-consistent loss function and (18) the conventional inflation-targeting

loss function.

As agents want to smooth their consumption over time that is due ot the concave nature of their utility

function, they dislike volatility in general. However, the weight that is placed on inflation in second-order

approximated utility functions in the canonical New Keynesian model such as (18) is usually considerably

higher compared to the weight on output (see Woodford, 2003 or Gaĺı, 2015). This reflects that price

dispersion, due to inflation and sticky prices, is the source of inefficiency in the baseline model, quickly

resulting in relatively large welfare losses. In case of the conventional inflation-targeting loss (18), the

weight on inflation is indeed very high and roughly 160 times the weight on output under baseline

calibration.2

However, when producers have heterogeneous expectations, price dispersion arises not only due to

sticky prices but also because they have different expectations regarding future inflation and marginal

costs, as reflected by (15). The weight on contemporaneous inflation in the model-consistent loss function

(17) is roughly 230 times of the weight on contemporaneous output under baseline calibration with a 70

percent of rational forecasters, and increases to 270 times of the weight on contemporaneous output for

50 percent of rational forecasters. Additionally, the weights on lagged inflation and on the interaction

between contemporaneous and lagged inflation are non-negligible. Hence, inflation results in even higher

welfare losses through the price dispersion channel under heterogeneous expectations. However, even

though inflation explains most of the results in the the welfare analysis in Section 5, there is still a

trade-off between inflation and output (and consumption dispersion) under a cost-push shock that can

be important in some cases.

Further, an interesting novelty of (14) is the appearance of consumption dispersion, i.e. the cross-

sectional variance in consumption vari(ct(i)). It should be noted, however, that the weight on consump-

tion dispersion in (14) is even smaller compared to the weight on output. This indicates that agents

might accept a certain degree of heterogeneity when the economy is relatively stable. This finding is

also in line with Debortoli and Gaĺı (2017) who derive a model-consistent loss function in a Two Agent

New Keynesian (TANK) model and show that it depends on a measure of heterogeneity but where the

corresponding weight relative to inflation and output is also very low.

2The fact that the weight on inflation is high relative to the weight on output is general and robust with respect to the
calibration.
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3.2 An optimal interest rate rule under commitment

The central bank is assumed to set its interest rate so as to minimize the model-consistent loss function

(17) or, respectively, the conventional inflation-targeting objective (18) subject to the private sector

equations

yt = αEtyt+1 + (1− α)θ2yt−1 − σ[it − αEtπt+1 − (1− α)θ2πt−1] (19)

πt = αβEtπt+1 + (1− α)βθ2πt−1 + κyt + et (20)

cRt = Etyt+1 − σ(it − Etπt+1). (21)

Minimizing the conventional inflation-targeting objective (18) subject to the Phillips curve (20) under

timeless commitment3 gives the sub-optimal inflation-targeting interest rate rule

it = γ1yt−1 + γ2Etyt+1 + γ3πt−1 + γ4Etπt+1 + γ5et (22)

with

γ1 =
(1− α)θ − α

σ
+ α

δε2ηκ2

1 + ησ + δε2ηκ2σ
(23)

γ2 = α
1

σ
− (1− α)

σ

[
β2θ2(1 + ησ)

1 + ησ + δε2ηκ2σ

]
(24)

γ3 = (1− α)

[
θ2(1 + η(σ + δε2κ(β + κσ)))

1 + ησ + δε2ηκ2σ

]
(25)

γ4 = α

[
1 +

βδε2ηκ

1 + ησ + δε2ηκ2σ

]
(26)

γ5 =
δε2ηκ

1 + ησ + δε2ηκ2σ
. (27)

Equation (22) is similar to the rule derived by Gasteiger (2018) and Gasteiger (2014).4 Note that timeless

commitment introduces persistence even in the absence of bounded rational forecaster, i.e. γ1 reduces to

δε2ηκ2

1+ησ+δε2ηκ2σ
− 1

σ and does not vanish for for α = 1.

The optimal commitment interest rate rule can be obtained by minimizing (17) subject to the private

3The timeless commitment approach of Woodford (2003) assumes that the optimal commitment policy was implemented
in the distant past so as to omit the first period’s optimality condition. The problem of the latter is that it renders the
policy time-inconsistent. Hence, the drop of the initial period’s optimality condition solves this problem.

4The author uses a non-micro-founded version of (18), i.e. Lt = 1
2
(π2
t +ωy2t ). Setting ω = ση+1

ε2ηδσ
and calculating through

the optimization problem yields the interest rate rule (22).
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sector equation (19), (20) and (21) under timeless commitment as

it =Ω1Etπt+1 + Ω2Etπt+2 + Ω3πt−3 + Ω4πt−2 + Ω5πt−1 + Ω6Etyt+1 + Ω7Etyt+2 (28)

+Ω8yt−2 + Ω9yt−1 + Ω10Etc
R
t+1 + Ω11Etc

R
t+2 + Ω12c

R
t−2 + Ω13c

R
t−1 + Ω14et

where the reaction coefficients Ωx and derivations are given in the Appendix B.2. A first inspection of (28)

shows that the central bank reacts to output and inflation as usual but also to individual consumption of

rational forecasters due to the consumption inequality dimension. However, a more striking observation

is that the central bank finds it optimal to react to lags and leads of all variables ranging from t−2 to t+2

(and additionally t− 3 for inflation). This will be clarified further below. Note that under homogeneous

rational expectations, α = 1, all coefficients associated with heterogeneous expectations vanish as well

as the additional coefficients due to commitment, except for yt−1 which can be seen in table (5) in the

Appendix B.4.

As the central bank is assumed to be rational in the conventional sense, it fully understands the

functioning of the economy, including the feedback of its policy on private sector rational expectations.

To gain more intuition for the fully optimal interest rate rule (28), I, for now, shut down this channel,

i.e. the central bank observes and reacts to heterogeneous expectations but does not incorporate the

feedback on private sector rational expectations.5 In this case, the interest rate rule is given by

it =Ω∗1yt−1 + Ω∗2Etyt+1 + Ω∗3Etyt+2 + Ω∗4πt−1 + Ω∗5Etπt+1 + Ω∗6Etπt+2

+ Ω∗7Etc
R
t+1 + Ω∗8Etc

R
t+2 + Ω∗9et (29)

where the reaction coefficients are given in the Appendix B.2.

By comparing (29) to (28) it becomes clear that all variables with timing t − 2 and t − 3 in (28)

are because the central bank includes the feedback between its policy and rational expectations when

calculating its optimal policy.

Moreover, to understand the appearance of the t + 2 terms consider figure (1) which displays the

reaction of the inflation expectations of both agent types following a one standard deviation i.i.d. cost-

push shock under the policy rule (28). Since all subsequent shock realizations are zero and rational

forecasters know the true aggregate equations, they have de facto perfect foresight. Thus, rational

forecasters’ expectations in t = 1 about inflation in t+1 will be correct, i.e. Etπt+1 = πt+1. However, the

5Such a behavior would, for instance, be consistent with a bounded rational central bank that operates under some sort
of ”limited” commitment. However, I use this only for the sake of exposition.
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Figure 1: Individual inflation expectations in percentage deviation from steady state following a single,
non-autocorrelated cost-push shock of one percent with monetary policy given by (28).

backward-looking expectations of bounded rational forecasters in t about inflation in t + 1 will be zero,

i.e. EBt πt+1 = πt−1 = 0 (where θ = 1 for simplicity). In period t + 1 bounded rational forecasters will

expect inflation to increase drastically in t + 2 as their expectations are based on the period where the

shock hits, i.e. EBt+1πt+2 = πt . On the contrary, rational forecasters correctly expect inflation to decrease

further as the central bank increases the nominal interest rate a second time (see impulse responses in

Figure 2 in section 4). Thus, the different expectations in t+1 about t+2 diverge transitorily. Therefore,

the central bank should set interest rates so as to align the two expectation types in order to minimize

the adverse effects of different expectations on price and consumption dispersion.

Moreover, it seems, at first glance, that for practical implementation the optimal interest rate rule

(28) requires to observe individual consumption of rational forecaster which is, however, not observable

in reality. As already indicated, an advantage of the consumption decision (10) is that it only depends

on aggregate variables as a result of the explicit incorporation of the higher-order beliefs assumption.

Therefore, it is possible to substitute for individual consumption so that the optimal interest rate rule is

merely a function of several leads and lags of aggregate variables.

4 Impulse Responses

This section briefly describes the simulation outcomes under baseline calibration. Determinacy issues

are not discussed as the model is determinate for all considered parameter constellations. There are two
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reasons for this. First, an expectations-based interest rate rule is derived, i.e. it properly accounts for

private sector expectations which are known to perform exceptionally well as opposed to fundamentals-

based reaction functions (Evans and Honkapohja, 2006). Second, the interest rate rule is derived from

the fully model-consistent loss function. Hence, the proposed interest rate rule is a good proxy for the

fully optimal (non-linear) policy.

The impulse responses of a one percent i.i.d cost-push shock with monetary policy given by (28) are

depicted in figure 2.

The aggregate behavior of the model is straight-forward: taking into account subjective expectations,

the real interest rates of both agent types, rτt = it − Eτt πt+1, increase due to an increase of the nominal

rate by the central bank. Hence, both agent types cut their individual consumption which leads to a

quite severe recession which counteracts the cost-push shock to some extent. Consequently, inflation

increases by less than one percent. Thus, the central bank finds it optimal to be extraordinarily hawkish

with respect to inflation which comes at the cost of a significant recession.
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Figure 2: Impulse responses in %-deviations from steady state following a single, non-autocorrelated
cost-push shock.

On the individual level, the disparity between the consumption adjustment paths of both agent types
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becomes obvious. While bounded rational forecasters cut their consumption by approximately three

percent on impact, rational forecasters decrease consumption by almost ten percent. This is, first, because

of substantially negative rational output gap expectations and, second, due to a slightly higher subjective

real interest rate. On the other hand, as bounded rational forecasters are backward-looking, their output

gap expectations are zero on impact and, therefore, cut their consumption because of the increase in

the subjective real interest rate only. This results in a consumption cut that is far smaller compared to

rational forecasters and thereby in significant inequality in individual consumption on impact.6

Thus, bounded rational forecaster seem to be better off than rational ones at first. However, bounded

rational forecasters make less smart decisions than rational forecasters by definition. This becomes clear

when looking at the following periods where bounded rational forecasters have to pay for their initially

higher consumption by giving up a lot of future consumption. Specifically, one can observe that bounded

rational output gap expectations in the second period (t+ 1) drop drastically to EBt+1yt+2 = yt which is

approximately minus 8 percent, resulting in a further cut of consumption. This is the case even though

the subjective real interest rate of bounded rational forecasters becomes negative which is due to the

jump of their inflation expectations to EBt+1πt+2 = πt. At the same time, output gap expectations of

rational forecasters increase as the output gap recovers. From this period onwards rational forecasters

are able to consume more than bounded rational ones for a prolonged time.

5 Welfare evaluation

This section provides a comparison between the optimal interest rate rule (28) and the non-optimal

inflation-targeting rule (22) in terms of welfare and a brief discussion on consumption dispersion. In

particular, I analyze the welfare consequences of these rules following a one-percent i.i.d. cost-push shock

as before. It should be noted that shocks to inflation directly (and hence to price dispersion) induce high

welfare losses. The reason is, first, that price dispersion leads to dispersion in imperfectly substitutable

individual production and, therefore, to losses in the final consumption bundle and, second, that output

itself needs to be contracted in order to bring down inflation. Further, I will restrict the analysis in this

Section to the case of naive expectations, i.e. θ = 1, of bounded rational forecasters for simplicity.

6I define consumption inequality here as cit = αcRt − (1 − α)cBt which should not be confused with the cross-sectional
variance of consumption.
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5.1 Optimal vs. inflation-targeting rule

In the following, I show to what extent the optimal interest rate rule (28) yields lower welfare losses com-

pared to rule (22) depending on the fraction of rational forecasters. To that end, I compute consumption

equivalent welfare losses following Ravenna and Walsh (2011). Let

WO = − C̄Uc
2
Et

∞∑
t=0

βtLOt + t.i.p. = − C̄Uc
2(1− β)

LO + t.i.p. (30)

be the welfare loss under the optimal commitment policy (28), and

WIT = − C̄Uc
2
Et

∞∑
t=0

βtLITt + t.i.p. = − C̄Uc
2(1− β)

LIT + t.i.p. (31)

be the welfare loss under the non-optimal inflation-targeting objective (22), where instantaneous losses

are measured by (17) in both cases. The welfare loss of implementing policy (22) instead of (28) can be

measured as the percentage increase of steady state consumption, E, satisfying

U((1 + E)× C̄)

1− β
+WIT =

U(C̄)

1− β
+WO. (32)

Inserting consumption utility U(C̄) = C̄1− 1
σ

1− 1
σ

,(30), (31) and Uc = C̄−
1
σ , and solving for E gives7

E =

(
1− σ − 1

2σ

(
LO − LIT

)) σ
σ−1

− 1. (33)

Table 2 shows absolute losses LO and LIT (second and third column) as well as the consumption

equivalent welfare costs, E, (fifth column) for different fractions of rational agents, α. The other columns

of Table 2 are discussed further below.

A first, more trivial observation is that absolute welfare losses increase with the fraction of bounded

rational forecasters for both interest rate rules. The higher the fraction of naive forecasters, the more

persistent the deviations of variables from steady state and, therefore, the higher the long-run variances.

Further, welfare losses are naturally lowest under the optimal interest rate rule (28). Deriving the interest

rate rule from the conventional inflation-targeting (IT) objective (18) is costly in terms of consumption

equivalents, E. The implementation of the non-optimal inflation-targeting rule (22) already requires an

increase of 14.5 percent of steady-state consumption to compensate for the higher welfare losses relative

to the optimal interest rate rule (28) when only ten percent of the population form (naive) backward-

7Note that the terms independent of policy (t.i.p.) are the same for bothWIT andWO and, therefore, cancel each other.
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α LT∗ LO LIT LIT∗ E E∗

0.95 161.65 127.077 127.138 127.09 0.030 0.006

0.9 183.82 144.988 145.274 144.99 0.145 0.034

0.7 277.56 243.455 246.632 244.02 1.744 0.290

0.5 400.36 394.547 402.428 395.45 4.693 0.47

Table 2: Column 2-4 show absolute welfare losses for numerically optimized simple Taylor rule (T ∗),
the optimal (O) interest rate rule (28), the inflation-targeting (IT ) rule (22) and the inflation-targeting
rule where the coefficients on inflation and the cost-push shock are numerically optimized (IT ∗). Column
5-6 depict consumption equivalent welfare costs of implementing the non-optimal inflation-targeting (IT)
interest rate rule (22) relative to the optimal (O) commitment policy (28) in percent, E, and also for the
numerically optimized inflation-targeting (IT ∗) rule relative to the optimal rule, E∗. All shown values
are calculated for different fractions of rational agents, α.

looking expectations. Welfare costs become substantially higher for higher fractions of bounded rational

forecasters (lower α). Hence, the optimal interest rate rule (28) yields considerable welfare gains when

the underlying economy features high degree of bounded rationality.

The difference between the two rules can be explained by their relative ability to stabilize inflation.

The first two rows in Table 3 depict the variances of inflation and output for different values of rational

forecasters, α, for both interest rate rules. In general, the optimal interest rate rule (first row) yields

lower inflation but higher output volatility across all fractions of rational forecasters, α. This is a

straightforward implication of the relatively higher weights on inflation in the model-consistent loss

function (17) compared to the conventional inflation-targeting objective (18), as discussed in Section

3.1. While the differences in output and inflation volatility are relatively low for α = 0.95, they become

substantial for higher fractions of bounded rational forecasters, resulting in quite extreme consumption

equivalents.

Further, as discussed in Section 3.2, the optimal interest rate rule (28) depends on much more leads

and lags of all variables compared to the non-optimal inflation-targeting rule (22). This raises the

question whether it is the absence of these leads and lags that makes (22) sub-optimal or if it is rather

an issue of weighting the different variables in the interest rate rule, or both. To answer this question,

I numerically optimize the weights on inflation and the cost-push shock with respect to welfare (17)

while ”fixing” the coefficients on output to the analytically derived ones, (23) and (24), for simplicity.

The corresponding absolute welfare losses, LIT∗, and consumption equivalent welfare costs relative to

the optimal commitment policy, E∗, can be found in columns four and six in Table 2, respectively.
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Consumption-equivalent welfare costs, E∗, substantially decrease relative to the consumption-equivalent

welfare costs, E. This indicates that the inflation-targeting interest rate rule (22) is sub-optimal rather

because of the sub-optimal weighting, especially for inflation. Hence, the optimal interest rate rule can

be approximated relatively well by using the functional form of the inflation-targeting rule (22) and

”adjusting” the weights accordingly.

V ar(y) V ar(π)

rule α = 0.95 α = 0.9 α = 0.7 α = 0.5 α = 0.95 α = 0.9 α = 0.7 α = 0.5

Optimal 41.23 50.66 115.17 231.69 0.58 0.60 0.66 0.67

IT 38.62 44.80 88.98 179.89 0.59 0.62 0.75 0.83

IT ∗ 41.37 50.93 116.82 232.55 0.58 0.60 0.66 0.66

T ∗ 42.00 59.98 149.45 240.37 0.78 0.78 0.70 0.65

Table 3: Theoretical variances of inflation and output under the optimal (O) rule (28), the inflation-
targeting (IT) objective (22), the numerically optimized inflation-targeting (IT ∗) rule and the numerically
optimized simple Taylor rule (T ∗) for different values of rational forecaster α.

Finally, for the sake of comparison, I add a numerically optimized simple Taylor rule with contempo-

raneous inflation and output to the analysis. Absolute welfare losses, LT∗, are shown in the first column

of Table 2 and the corresponding variances of inflation and output can be found in the last row of Table

3. For a fraction of 70 percent of rational forecasters, or higher, the numerically optimized simple Taylor

rule is the worst performing among all alternatives. However, interestingly, for 50 percent of rational

forecasters it trumps the analytically derived inflation-targeting rule (22). In this case, it even yields

lower inflation volatility than the optimal commitment policy. This is, however, not welfare maximizing

which indicates that, although inflation is the most important driver of welfare, there is still a welfare-

relevant trade-off between inflation and output as output volatility is highest among all interest rate rules

for α = 0.5.

5.2 Inflation and welfare vs. consumption dispersion

In this section, I briefly discuss the issue of distribution, measured by the cross-sectional variance in con-

sumption (16), and monetary policy. It should be noted, however, that welfare losses due to consumption

dispersion are in general very low under the model-consistent loss function (17), where individual utilities

are weighted equally and simply summed up. Of course, different conclusions may be reached when a
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social planer would attach higher weights to ”inequality”.

Table 4 shows consumption dispersion (CD) and the variance of inflation for both the optimal interest

rate rule (O) and inflation-targeting rule (IT ) for different fractions of rational forecasters, α. Interest-

ingly, consumption dispersion is higher under the optimal interest rate rule compared to the (analytically

derived) inflation-targeting rule for all α. This is the case even though the former explicitly incorpo-

rates consumption heterogeneity as opposed to the latter. At the same time, the optimal interest rate

rule yields lower inflation volatility, as discussed in the previous section. This indicates that the model

additionally implies a trade-off between stabilizing inflation and consumption heterogeneity.

α CDO CDIT var(π)O var(π)IT

0.95 1.904 1.104 0.580 0.590

0.9 4.071 2.567 0.597 0.618

0.7 17.805 12.700 0.664 0.750

0.5 39.071 25.812 0.670 0.833

Table 4: Consumption dispersion (CD) vari(ct(i)) under the optimal (O) interest rate rule (28) and the
non-optimal inflation-targeting (IT) rule (22) for different fractions of rational forecaster α.

The trade-off becomes more evident when considering Figure 3. Figure 3 depicts consumption dis-

persion, the inflation variance (right ordinate) and absolute welfare losses (left ordinate) in case of a

simple Taylor rule against different values of the coefficient on inflation.8 The higher the coefficient on

inflation, the lower inflation volatility and the higher consumption dispersion. Therefore, it is not surpris-

ing that this also implies a local trade-off between minimizing welfare losses and reducing consumption

dispersion.9 Minimizing welfare losses requires the central bank to get a tight grip on inflation causing

a substantial drop of individual consumption over time. As both agents react quite differently to the

increase in the policy rate, as discussed in Section 4, consumption dispersion increases with the central

bank’s aggressiveness towards inflation.

Another observation worth mentioning is that consumption dispersion is minimized when the coef-

ficient on inflation in the Taylor rule is one, i.e. when it = πt holds. This was analytically shown by

Hagenhoff and Lustenhouwer (2019) in a model with fully rational agents and bounded rational agents

8The coefficient on output is zero which is optimal under the model-consistent loss function (17).
9On the left side of the minimum, welfare losses decrease because of decreasing inflation. At the same time, consumption

dispersion increases. At some point, however, welfare losses increase again as output volatility (not shown in Figure 3)
becomes substantially higher as the central bank needs to contract output further to achieve further reductions in inflation.
Therefore, the trade-off between welfare and consumption dispersion arises only locally, i.e. on the left side of the minimum
where welfare losses and inflation decrease simultaneously.
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Figure 3: Trade-off between minimizing welfare, inflation and consumption dispersion under a simple
Taylor rule and 70% of rational agents.

similar to this paper. Thus, the appearance of the same finding in this model serves as a robustness check

for Hagenhoff and Lustenhouwer (2019).

6 Conclusion

In this paper, I propose a fully optimal interest rate rule under heterogeneous expectations where the

central bank commits to its policy from a timeless perspective. This rule incorporates the more complex

nature of price dispersion and consumption dispersion under heterogeneous expectations as identified

by Di Bartolomeo et al. (2016). Further, this rules performs considerably better than a micro-founded

version of the interest rate rule as in Gasteiger (2014). The implementation of the non-optimal inflation-

targeting rule already requires an increase of 14.5 percent of steady-state consumption to compensate for

the higher welfare losses relative to the optimal interest rate rule when only ten percent of the population

form (naive) backward-looking expectations.

I additionally explore the properties of the expectations operator of ”rational” agents in the Branch

and McGough (2009) framework and find that the consumption Euler equation that includes model-

consistent individual consumption expectations as in Di Bartolomeo et al. (2016) is inconsistent with the

higher-order beliefs assumption of Branch and McGough (2009). This assumption puts a specific (non-

rational) structure on higher-order beliefs which implies that not even ”rational forecasters” understand

the micro level fully. Therefore, I derive consumption decisions that account for this particular assumption
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which makes it the implementation of the optimal commitment policy by an interest rate rule possible

in the first place.

Finally, I illustrate that the model implies a local trade-off between maximizing welfare and reducing

consumption dispersion. The reason is that consumption dispersion increases with the central bank’s

aggressiveness towards inflation, as rational and bounded rational forecasters consumption decisions

become more unequal with more aggressive inflation-targeting. Because inflation is the most important

determinant of welfare, the central bank has to allow for a certain heterogeneity in consumption to

maximize welfare.
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Debortoli, D. and Gaĺı, J. (2017). Monetary policy with heterogeneous agents: Insights from tank models.

Manuscript, September.

Di Bartolomeo, G., Di Pietro, M., and Giannini, B. (2016). Optimal monetary policy in a new keynesian

model with heterogeneous expectations. Journal of Economic Dynamics and Control, 73:373 – 387.

Evans, G. W. and Honkapohja, S. (2006). Monetary policy, expectations and commitment. The Scandi-

navian Journal of Economics, 108(1):15–38.
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A Implementation under the conventional inflation-targeting objec-

tive

The policy problem under commitment and the conventional inflation-targeting objective is given by

L = Et

∞∑
s=0

βs
1

2

[(
η +

1

σ

)
y2
t+s + ε2ηδπ2

t+s

]
(34)

+ λt+s[πt+s − αβEtπt+s+1 − (1− α)βθ2πt+s−1 − κyt+s − et+s]

∂L
∂πt+s

: Et

{
ε2ηδπt+s +

λt+s
2
− (1− α)β2θ2λt+s+1

2
− αλt+s−1

2

}
!

= 0 (35)

∂L
∂yt+s

: Et

{
βs
[(
η +

1

σ

)
yt+s −

κ

2
λt+s

]}
!

= 0. (36)

Combining and solving for inflation gives

πt = − 1 + ησ

σε2ηδκ
[yt − αyt−1 − (1− α)β2θ2Etyt+1] (37)
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where the index s was dropped as the central bank employs timeless commitment. Combining with the

Phillips and IS curve yields (22).

B Optimal monetary policy

B.1 Rewriting the model-consistent loss function

The period loss function Lt is given by

Lt =
ση + 1

σ
y2
t +

α(yt − cRt )2

(1− α)σ

+ ε2ηδ

{
π2
t +

ξp(1− α)

α

[
πt − βθ2πt−1 − κyt −

ακ(yt − cRt )

(1 + ησ)(1− α)

]2
}
. (38)

which can be rewritten using market clearing to eliminate cBt as

Lt =
ση + 1

σ
y2
t +

α(yt − cRt )2

(1− α)σ

+ ε2ηδ

{
π2
t +

ξp(1− α)

α

[
πt − βθ2πt−1 − κyt −

ακ(yt − cRt )

(1 + ησ)(1− α)

]2
}
. (39)

By multiplying out, we get

Lt =Γ1y
2
t + Γ2π

2
t + Γ3π

2
t−1 + Γ4(cRt )2 (40)

+Γ5ytc
R
t + Γ6πtc

R
t + Γ7πt−1c

R
t + Γ8πtπt−1 + Γ9πtyt + Γ10πt−1yt
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with

Γ1 =
((α− 1)ησ − 1)(α(η2σ2(δε2κ2ξp − 1)− 1− 2ησ)− δε2ηκ2ξpσ(1 + ησ))

(1− α)ασ(1 + ησ)2
(41)

Γ2 =
δε2η(α+ ξp − αξp)

α
(42)

Γ3 =
(1− α)β2δε2ηθ4ξp

α
(43)

Γ4 =
α(1 + ησ(2 + δε2κ2ξp) + η2σ2)

(1− α)σ(1 + ησ)2
(44)

Γ5 =
2(α+ 2αησ + αη2σ2(1− δε2κ2ξp) + δε2ηκ2ξpσ(1 + ησ))

(α− 1)σ(1 + ησ)2
(45)

Γ6 =
2δε2ηκξp
1 + ησ

(46)

Γ7 = −2βδε2ηθ2κξp
1 + ησ

(47)

Γ8 =
2(α− 1)βδε2ηθ2ξp

α
(48)

Γ9 =
2δε2ηκξp((α− 1)ησ − 1)

α+ αησ
(49)

Γ10 =
2βδε2ηθ2κξp(1 + ησ(1− α))

α+ αησ
. (50)

B.2 Optimal interest rate rule

The policy problem under full commitment takes the following form:

L = Et

∞∑
s=0

βs

[
Γ1y

2
t+s + Γ2π

2
t+s + Γ3π

2
t+s−1 + Γ4(cRt+s)

2

+Γ5yt+sc
R
t+s + Γ6πt+sc

R
t+s + Γ7πt+s−1c

R
t+s + Γ8πt+sπt+s−1 + Γ9πt+syt+s + Γ10πt+s−1yt+s

+ λ1,t+s[yt+s − αEtyt+s+1 − (1− α)θ2yt+s−1 + σ[it+s − αEtπt+s+1 − (1− α)θ2πt+s−1]]

+ λ2,t+s[πt+s − αβEtπt+s+1 − (1− α)βθ2πt+s−1 − κyt+s − et+s]

+λ3,t+s[c
R
t+s − Etyt+s+1 − φbRt+s−1 + σ(it+s − Etπt+s+1)]

]
. (51)
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The first order conditions are

∂L
∂yt+s

: Et

{
βs[2Γ1yt+s + Γ5c

R
t+s + Γ9πt+s + Γ10πt+s−1 + λ1,t+s − κλ2,t+s] (52)

− βs+1(1− α)θ2λ1,t+s+1 − βs−1[αλ1,t+s−1 + λ3,t+s−1]

}
!

= 0

∂L
∂πt+s

: Et

{
βs[2Γ2πt+s + Γ6c

R
t+s + Γ8πt+s−1 + Γ9yt+s + λ2,t+s]

+ βs+1[2Γ3πt+s + Γ7ct+s+1 + Γ8πt+s+1 + Γ10yt+s+1 − (1− α)θ2σλ1,t+s+1 (53)

− (1− α)βθ2λ2,t+s+1]− βs−1[ασλ1,t+s−1 + αβλ2,t+s−1 + σ λ3,t+s−1]

}
!

= 0

∂L
∂cRt+s

: Et

{
βs[2Γ4c

R
t+s + Γ5yt+s + Γ6πt+s + Γ7πt+s−1 (54)

+ λ3,t+s]

}
!

= 0

∂L
∂it+s

: Et

{
βsσλ1,t+s + βsσλ3,t+s

}
!

= 0. (55)

Again, the index s can be dropped assuming commitment from a timeless perspective. Using λ3,t = −λ1,t

the FOCs can equivalently be written as

2Γ1yt + Γ5c
R
t + Γ9πt + Γ10πt−1 + λ1,t − κλ2,t − (1− α)βθ2λ1,t+1−

β−1(α− 1)λ1,t−1
!

= 0 (56)

2Γ2πt + Γ6c
R
t + Γ8πt−1 + Γ9yt + λ2,t

+ 2Γ3βπt + Γ7βct+1 + Γ8βπt+1 + Γ10βyt+1 − (1− α)βθ2σλ1,t+1 (57)

− (1− α)β2θ2λ2,t+1 + β−1(1− α)σλ1,t−1 − αλ2,t−1
!

= 0

2Γ4c
R
t + Γ5yt + Γ6πt + Γ7πt−1 − λ1,t

!
= 0. (58)

Eliminating the Lagrange multipliers yields the reduced-form FOC

∆c
1πt + ∆c

2πt+1 + ∆c
3πt+2 + ∆c

4πt−3 + ∆c
5πt−2 + ∆c

6πt−1 + ∆7yt + ∆c
8yt+1 (59)

+∆c
9yt+2 + ∆c

10yt−2 + ∆c
11yt−1 + ∆12c

R
t + ∆c

13c
R
t+1 + ∆c

14c
R
t+2 + ∆c

15c
R
t−2 + ∆c

16c
R
t−1

!
= 0.
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with

∆1 = Γ6 + Γ9 + (1− α)(−1 + 2α)βΓ6θ
2 + 2Γ2κ+ 2βΓ3κ (60)

+ (α− 1)βθ2(Γ7 + β(Γ10 + Γ7) + Γ7κσ) (61)

∆2 = β(Γ8κ+ (α− 1)θ2(β(Γ9 + (α− 1)βΓ7θ
2) + Γ6(1 + β + κσ))) (62)

∆3 = (α− 1)2β3Γ6θ
4 (63)

∆4 =
(α− 1)αΓ7

β
(64)

∆5 =
α2Γ6 + Γ7 + Γ7κσ − α(Γ6 + Γ7 + β(Γ10 + Γ7) + Γ7κσ)

β
(65)

∆6 = Γ10 + Γ7 − α(Γ6 + Γ9) + (−1 + (3− 2α)α)βΓ7θ
2 + Γ8κ (66)

− (α− 1)Γ6(1 + κσ)

β
(67)

∆7 = 2Γ1 + Γ5 + (1− α)(2α− 1)βΓ5θ
2 + Γ9κ (68)

∆8 = β(Γ10κ+ (α− 1)θ2(Γ5 + β(2Γ1 + Γ5) + Γ5κσ) (69)

∆9 = (α− 1)2β3Γ5θ
4 (70)

∆10 =
(α− 1)αΓ5

β
(71)

∆11 =
Γ5 + Γ5κσ − α(Γ5 + β(2Γ1 + Γ5) + Γ5κσ)

β
(72)

∆12 = 2Γ4 + Γ5 − 2(α− 1)(2α− 1)βΓ4θ
2 + Γ6κ) (73)

∆13 = β(Γ7κ+ (α− 1)θ2(βΓ5 + 2Γ4(1 + β + κσ)) (74)

∆14 = 2(α− 1)2β3Γ4θ
4 (75)

∆15 =
2(α− 1)αΓ4

β
(76)

∆16 = −αΓ5 −
2Γ4(−1 + α+ αβ + (α− 1)κσ)

β
. (77)

Solving (59) for πt and setting it equal to the NK Phillips curve yields

yt = − 1

∆7 + ∆1κ
((αβ∆1 + ∆2)πt+1 + ∆3πt+2 + ∆4πt−3 + ∆5πt−2

+ (∆6 + (1− α)βθ2∆1)πt−1 + ∆8yt+1 + ∆9yt+2 + ∆10yt−2 + ∆11yt−1 (78)

+ ∆13c
R
t+1 + ∆14c

R
t+2 + ∆15c

R
t−2 + ∆16c

R
t−1)

27



Setting (78) equal to the New IS curve, substituting cRt for consumption demand and solving for it gives

the central bank’s reaction function under commitment (28):

it =Ω1Etπt+1 + Ω2Etπt+2 + Ω3πt−3 + Ω4πt−2 + Ω5πt−1 + Ω6Etyt+1 + Ω7Etyt+2 (79)

+Ω8yt−2 + Ω9yt−1 + Ω10Etc
R
t+1 + Ω11Etc

R
t+2 + Ω12c

R
t−2 + Ω13c

R
t−1 + Ω14et

with

Ω1 =
αβ∆1 + ∆2 + σ∆12 + ασ(∆7 + ∆1κ)

σ(∆7 + ∆12 + ∆1κ)
(80)

Ω2 =
∆3

σ(∆7 + ∆12 + ∆1κ)
(81)

Ω3 =
∆4

σ(∆7 + ∆12 + ∆1κ)
(82)

Ω4 =
∆5

σ(∆7 + ∆12 + ∆1κ)
(83)

Ω5 =
∆6 + (1− α)θ2(β∆1 + σ(∆7 + ∆1κ))

σ(∆7 + ∆12 + ∆1κ)
(84)

Ω6 =
∆12 + α∆7 + ∆8 + ακ∆1

σ(∆7 + ∆12 + ∆1κ)
(85)

Ω7 =
∆9

σ(∆7 + ∆12 + ∆1κ)
(86)

Ω8 =
∆10

σ(∆7 + ∆12 + ∆1κ)
(87)

Ω9 =
∆11 + (1− α)θ2(∆7 + ∆1κ)

σ(∆7 + ∆12 + ∆1κ)
(88)

Ω10 =
∆13

σ(∆7 + ∆12 + ∆1κ)
(89)

Ω11 =
∆14

σ(∆7 + ∆12 + ∆1κ)
(90)

Ω12 =
∆15

σ(∆7 + ∆12 + ∆1κ)
(91)

Ω13 =
∆16

σ(∆7 + ∆12 + ∆1κ)
(92)

Ω14 =
∆1

σ(∆7 + ∆12 + ∆1κ)
. (93)
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B.3 Taking rational expectations as given

Defining ft+s = Etyt+s+1, gt+s = Etπt+s+1 and ht+s = Etc
R
t+s+1, the policy problem is

L = Et

∞∑
s=0

βs

[
Γ1y

2
t+s + Γ2π

2
t+s + Γ3π

2
t+s−1 + Γ4(cRt+s)

2

+Γ5yt+sc
R
t+s + Γ6πt+sc

R
t+s + Γ7πt+s−1c

R
t+s + Γ8πt+sπt+s−1 + Γ9πt+syt+s + Γ10πt+s−1yt+s

+ λ1,t+s[yt+s − αft+s − (1− α)θ2yt+s−1 + σ[it+s − αgt+s − (1− α)θ2πt+s−1]]

+ λ2,t+s[πt+s − αβgt+s − (1− α)βθ2πt+s−1 − κyt+s − et+s]

+λ3,t+s[c
R
t+s − ht+s − φbRt+s−1 + σ(it+s − gt+s)]

]
. (94)

The first order conditions are

∂L
∂yt+s

: Et

{
βs[2Γ1yt+s + Γ5c

R
t+s + Γ9πt+s + Γ10πt+s−1 + λ1,t+s − κλ2,t+s] (95)

− βs+1(1− α)θ2λ1,t+s+1

}
!

= 0

∂L
∂πt+s

: Et

{
βs[2Γ2πt+s + Γ6c

R
t+s + Γ8πt+s−1 + Γ9yt+s + λ2,t+s]

+ βs+1[2Γ3πt+s + Γ7ct+s+1 + Γ8πt+s+1 + Γ10yt+s+1 − (1− α)θ2σλ1,t+s+1 (96)

− (1− α)βθ2λ2,t+s+1]

}
!

= 0

∂L
∂cRt+s

: Et

{
βs[2Γ4c

R
t+s + Γ5yt+s + Γ6πt+s + Γ7πt+s−1 + λ3,t+s]

}
!

= 0

∂L
∂it+s

: Et

{
βsσλ1,t+s + βsσλ3,t+s

}
!

= 0. (97)
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Since the central bank acts under timeless commitment, the index s can be dropped. Using λ3,t = −λ1,t

the FOCs can equivalently be written as

2Γ1yt + Γ5c
R
t + Γ9πt + Γ10πt−1 + λ1,t − κλ2,t − (1− α)βθ2Etλ1,t+1

!
= 0 (98)

2Γ2πt + Γ6c
R
t + Γ8πt−1 + Γ9yt + λ2,t + 2Γ3βπt + Γ7βEtc

R
t+1 + Γ8βEtπt+1 (99)

+ Γ10βEtyt+1 − (1− α)βθ2σEtλ1,t+1 − (1− α)β2θ2Etλ2,t+1
!

= 0

2Γ4c
R
t + Γ5yt + Γ6πt + Γ7πt−1 − λ1,t

!
= 0. (100)

Eliminating the Lagrange multipliers yields the reduced-form FOC

∆1πt + ∆2Etπt+1 + ∆3Etπt+2 + ∆4πt−1 + ∆5yt + ∆6Etyt+1 + ∆7Etyt+2

+ ∆8c
R
t + ∆9Etc

R
t+1 + ∆10Etc

R
t+2

!
= 0 (101)

with

∆1 = −Γ6 + Γ9 + 2Γ2κ+ 2βΓ3κ− (1− α)βθ2(Γ7 + β(Γ10 + Γ7) + Γ7κσ)

κ
(102)

∆2 =
(1− α)βθ2(β(Γ9 − (1− α)βΓ7θ

2) + Γ6(1 + β + κσ))

κ
− βΓ8 (103)

∆3 = −(α− 1)2β3θ4Γ6

κ
(104)

∆4 = −Γ10 + Γ7 + Γ8κ

κ
(105)

∆5 = −2Γ1 + Γ5 + Γ9κ

κ
(106)

∆6 = −β((α− 1)β(2Γ1 + Γ5)θ2 + Γ10κ+ (α− 1)Γ5θ
2(1 + κσ))

κ
(107)

∆7 = −(α− 1)2β3θ4Γ5

κ
(108)

∆8 = −2Γ4 + Γ5 + Γ6κ

κ
(109)

∆9 = −β((α− 1)βΓ5θ
2 + Γ7κ+ 2(α− 1)Γ4θ

2(1 + β + κσ))

κ
(110)

∆10 = −2(α− 1)2β3θ4Γ4

κ
. (111)
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Solving (101) for πt and setting it equal to the NK Phillips curve yields

yt =− 1

∆5 + ∆1κ
(∆6yt+1 + ∆7yt+2 + (∆2 + αβ∆1)πt+1 + ∆3πt+2 + (∆4 + (1− α)βθ2∆1)πt−1

+ ∆8c
R
t + ∆9c

R
t+1 + ∆10c

R
t+2 + ∆1et). (112)

Setting (112) equal to the New IS curve, substituting cRt for consumption demand and solving for it gives

the reaction function under the assumption that the central bank takes rational expectations as given

it =Ω∗1yt−1 + Ω∗2Etyt+1 + Ω∗3Etyt+2 + Ω∗4πt−1 + Ω∗5Etπt+1 + Ω∗6Etπt+2

+ Ω∗7Etc
R
t+1 + Ω∗8Etc

R
t+2 + Ω∗9et (113)

with

Ω∗1 =
(1− α)θ2(∆5 + ∆1κ)

σ(∆5 + ∆8 + ∆1κ)
(114)

Ω∗2 =
∆6 + ∆8 + α(∆5 + ∆1κ)

σ(∆5 + ∆8 + ∆1κ)
(115)

Ω∗3 =
∆7

σ(∆5 + ∆8 + ∆1κ)
(116)

Ω∗4 =
∆4 + (1− α)θ2(β∆1 + σ(∆5 + ∆1κ))

σ(∆5 + ∆8 + ∆1κ)
(117)

Ω∗5 =
αβ∆1 + ∆2 + σ∆8 + ασ(∆5 + ∆1κ)

σ(∆5 + ∆8 + ∆1κ)
(118)

Ω∗6 =
∆3

σ(∆5 + ∆8 + ∆1κ)
(119)

Ω∗7 =
∆9

σ(∆5 + ∆8 + ∆1κ)
(120)

Ω∗8 =
∆10

σ(∆5 + ∆8 + ∆1κ)
(121)

Ω∗9 =
∆1

σ(∆5 + ∆8 + ∆1κ)
. (122)

The Ω-coefficients are expressed in terms of the targeting rule coefficients for simplicity. Writing them

in terms of the deep model parameters would yield in part far to big expression.

B.4 Tables
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Ωx α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α→ 1 (RE)

yt−2 0.001 0.004 0.01 0.018 0.029 0
yt−1 0.115 0.052 -0.016 -0.085 -0.153 -0.139
Etyt+1 -0.08 -0.02 0.045 0.111 0.175 0.160
Etyt+2 -0.005 -0.008 -0.009 -0.007 -0.003 0
πt−3 0.012 0.028 0.034 0.029 0.013 0
πt−2 -0.609 -0.502 -0.38 -0.241 -0.085 0
πt−1 2.747 2.082 1.420 0.792 0.238 0
Etπt+1 -0.482 0.115 0.697 1.229 1.639 1.851
Etπt+2 0.103 0.064 0.033 0.012 0.001 0
Etc

R
t−2 0 -0.003 -0.009 -0.017 -0.029 0

Etc
R
t−1 0.004 0.013 0.022 0.031 0.041 0

Etc
R
t+1 -0.004 -0.012 -0.021 -0.031 -0.040 0

Etc
R
t+2 0.003 0.007 0.008 0.007 0.003 0
et 1.275 1.227 1.154 1.056 0.932 0.859

Table 5: Values of reaction coefficients ΩC
x in the interest rate rule (28) for different values of the share

of rational forecasters α.

C Implementation with model-consistent individual consumption ex-

pectations

The policy problem under commitment and the conventional Euler equation with model-consistent indi-

vidual consumption expectations takes the following form:

L = Et

∞∑
s=0

βs

[
Γ1y

2
t+s + Γ2π

2
t+s + Γ3π

2
t+s−1 + Γ4(cRt+s)

2

+Γ5yt+sc
R
t+s + Γ6πt+sc

R
t+s + Γ7πt+s−1c

R
t+s + Γ8πt+sπt+s−1 + Γ9πt+syt+s + Γ10πt+s−1yt+s

+ λ1,t+s[yt+s − αEtyt+s+1 − (1− α)θ2yt+s−1 + σ[it+s − αEtπt+s+1 − (1− α)θ2πt+s−1]]

+ λ2,t+s[πt+s − αβEtπt+s+1 − (1− α)βθ2πt+s−1 − κyt+s − et+s]

+λ3,t+s[c
R
t+s − EtcRt+s+1 + σ(it+s − Etπt+s+1)]

]
. (123)
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The first order conditions are

∂L
∂yt+s

: Et

{
βs[2Γ1yt+s + Γ5c

R
t+s + Γ9πt+s + Γ10πt+s−1 + λ1,t+s − κλ2,t+s] (124)

− βs+1(1− α)θ2λ1,t+s+1 − βs−1αλ1,t+s−1

}
!

= 0

∂L
∂πt+s

: Et

{
βs[2Γ2πt+s + Γ6c

R
t+s + Γ8πt+s−1 + Γ9yt+s + λ2,t+s]

+ βs+1[2Γ3πt+s + Γ7ct+s+1 + Γ8πt+s+1 + Γ10yt+s+1 − (1− α)θ2σλ1,t+s+1 (125)

− (1− α)βθ2λ2,t+s+1]− βs−1[ασλ1,t+s−1 + αβλ2,t+s−1 + σ λ3,t+s−1]

}
!

= 0

∂L
∂cRt+s

: Et

{
βs[2Γ4c

R
t+s + Γ5yt+s + Γ6πt+s + Γ7πt+s−1 (126)

+ λ3,t+s]− βs−1λ3,t+s−1

}
!

= 0

∂L
∂it+s

: Et

{
βsσλ1,t+s + βsσλ3,t+s

}
!

= 0. (127)

Again, the index s can be dropped assuming commitment from a timeless perspective. Using λ3,t = −λ1,t

the FOCs can equivalently be written as

2Γ1yt + Γ5c
R
t + Γ9πt + Γ10πt−1 + λ1,t − κλ2,t − (1− α)βθ2λ1,t+1−

β−1αλ1,t−1
!

= 0 (128)

2Γ2πt + Γ6c
R
t + Γ8πt−1 + Γ9yt + λ2,t

+ 2Γ3βπt + Γ7βct+1 + Γ8βπt+1 + Γ10βyt+1 − (1− α)βθ2σλ1,t+1 (129)

− (1− α)β2θ2λ2,t+1 + β−1(1− α)σλ1,t−1 − αλ2,t−1
!

= 0

2Γ4c
R
t + Γ5yt + Γ6πt + Γ7πt−1 − λ1,t + β−1λ1,t−1

!
= 0.. (130)

(130) can be used to replace λ1,t−1 and λ1,t+1 with λ1,t in (128). Then, solving (128) for λ1,t and inserting

in (129) yields a second-order difference equation in λ2,t. A solution to this equation can in principle be

substituted back into the difference equation, which would give a targeting rule. However, this solution

is fairly complicated in which some parameter terms exponentially depend on time. The solution is
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available upon request. The resulting targeting rule and, hence, a reaction function would also be of

such a complicated form where parameters exponentially depend on time. Consequently, no meaningful

interest rate rule under commitment can be derived in this case.
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