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1 Introduction

Incomplete insurance-market economies provide a useful framework for examining many relevant

aspects of inequalities, among households, firms or even countries. In these models, infinitely-

lived agents face incomplete insurance markets and borrowing limits that prevent them from

perfectly hedging their idiosyncratic risk, in line with the Bewley-Huggett-Aiyagari literature

(Bewley 1983, Imrohoroğlu 1989, Huggett 1993, Aiyagari 1994, Krusell and Smith 1998). These

frameworks are becoming increasingly popular, since they fill a gap between micro- and macroe-

conomics and enable the inclusion of aggregate shocks and a number of additional frictions on

both the goods and labor markets. However, in terms of normative analysis, little is known

about optimal policies in these environments, due to the difficulties generated by the large and

time-varying heterogeneity across agents. This is unfortunate, since a vast literature, reviewed

below, suggests that the interaction between wealth inequalities and capital accumulation has

first-order implications for the design of optimal time-varying policies.

This paper presents a methodological contribution that offers a general and tractable rep-

resentation of incomplete insurance-market economies. This representation allows us to easily

solve the Ramsey problem in economies with both capital and aggregate shocks. We apply

our framework to the optimal provision of a public good over the business cycle as a simple

application of the methodology.

Heterogeneity indeed increases with time in incomplete insurance-market economies because

agents differ according to the full history of their idiosyncratic risk realizations. Huggett (1993),

using the results of Hopenhayn and Prescott (1992), and Aiyagari (1994) have shown that

economies without aggregate risk have a recursive structure when the distribution of wealth is

introduced as a state variable. Unfortunately, the distribution of wealth has infinite support,

which is at the root of many analytical difficulties. Our methodological contribution is to

represent incomplete insurance-market economies as economies with finite support.

The basic idea is first to go back in the sequential representation to consider the set of

idiosyncratic histories at each period. Then one can use a time-invariant partition of these

histories P such that each agent, at each period, belongs to one and exactly one element of this

partition p ∈ P. Then we show that there is a simple way to aggregate heterogeneity within

each element p, such that one can follow the dynamics of the finite number of elements p ∈ P,

instead of the whole distribution.

Our approach is thus to project the model on the space of idiosyncratic histories, to simulate

2



the model and derive optimal policies. What is the proper choice of the partition? Some explicit

partitions can be constructed, based on a truncation of idiosyncratic histories (as we did in a

previous version of this paper see LeGrand and Ragot (2017)). Each agent having the same

history of the idiosyncratic shock for the last N periods are in the same element of P (for a

given length N). Partitions can be defined more generally using information about the steady-

state equilibrium to gather histories in an efficient manner. The interest of this construction

is threefold. First, constructing the projection, we show that it provides some improvement

on previous algorithms to solve incomplete-insurance market with aggregate shocks, as Reiter

(2009). In particular, we use the information about the steady-state distribution of wealth

and we capture the heterogeneity in Euler equations within each elements of the partition P.

Second and more importantly, this construction allows us to derive optimal Ramsey program

with aggregate shocks. The basic idea is as follows. One can use tools developed in dynamic

contracts, namely Marcet and Marimon (2011) applied on elements of the partition p ∈ P,

to derive first-order conditions for the planner. These conditions are then easy to simulate

with aggregate shocks. In these economies, the difficult part is to find the steady-state of the

optimal Ramsey policies (and check that this interior solution is consistent with second-order

conditions). The projection techniques provides then a simple algorithm using information from

a general Bewley model, to show the convergence of the instrument of the planner. We apply

this methodology to the question of the optimal provision of public good in an economy with

uninsurable employment risk and aggregate shocks, when the public good is financed by a tax

on labor. In the quantitative application, we use the calibration of Krueger, Mitman, and Perri

(2017), which reproduces a realistic time-varying unemployment risk, income risk and wealth

distribution. This example is purposely a simple normative question, in order to present the

methodology in a transparent way. A third interest of this construction is to provide a theoretical

representation of algorithms using projections methods. The gain is that equations, such as the

first-order conditions of the planner, are easy to understand economically. This help us identify

propagation channels in these very complex models.

This paper is mainly related to two strands of the literature. The first one is the computation

of incomplete insurance markets with aggregate shocks. After the seminal paper of Krusell and

Smith (1998), incomplete insurance market models with aggregate shocks have first been solved

using a fixed point on simple expectations rules. Since, the work of Reiter (2009), the literature

has used projection methods to first simplify the distribution of wealth and then simulate the

model. These techniques are now used in various setups, to solve discrete-time models Winberry
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(2016) or models first written in continuous time as in Ahn, Kaplan, Moll, Winberry, and Wolf

(2017). In this literature, our contribution is to improve on simple projections methods by using

more information about the steady-state Bewley model.

Second, this paper is related to the literature on optimal (Ramsey) policies in heterogeneous

agent models. This literature is thin and very recent. First, Açikgöz (2015) provides an algo-

rithm to solve for the steady-state allocation of the Ramsey program, based on assumptions

on functional form. Nuño and Moll (2017) use a continuous-time approach without aggregate

shock and rely on projection methods to determine the steady-state allocation. Bhandari, Evans,

Golosov, and Sargent (2016) present a solution method of models with aggregate shocks, which

relies on perturbation methods around time-varying allocations. They solve the model approx-

imating the distribution by 100,000 agents. Compared to these models our contribution is to

provide a general representation allowing to simulate general models with optimal policies and

aggregate shocks.

The rest of the paper is organized as follows. Section 2 presents the simple environment,

on which our methodology will be applied. Section 3 presents the projection in the space of

idiosyncratic histories in the general case. Section 4 presents solution techniques to derive

optimal policies. Section 5 analyses in more detail how Reiter (2009) can be understood as

an implicit partition to provide some improvement on its algorithm. Section 6 provides two

numerical examples, a first one without optimal policies to benchmark our method with other

ones presented in the literature. The second one computes optimal time-varying fiscal policy.

2 The economy

We consider a discrete-time setup. The economy features a single good and is populated by

a population of size 1 of agents distributed on a segment I according to a measure ` (·). We

assume that the law of large number holds.

2.1 Preferences

Agents derive utility in each period from private consumption c and from the provision of a

public good G. The period utility function is denoted U(c,G) and is assumed to be separable

in private consumption and public good provision. Its functional form is

U (c,G) = u (c) + v (G) ,
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where u and v are twice continuously derivable functions from R+ onto R. Functions u and v

are strictly increasing and concave, with limc→0+ u
′(c) =∞.

In what follows, we use a CRRA utility function:

u(c) = c1−γ − 1
1− γ + χ

G1−γG − 1
1− γG

, (1)

where 0 < γ, γG 6= 1. When γ = γG = 1, the utility function is simply U (c,G) = log(c) +

χ log (G) (the two other cases γ = 1 6= γG and γ 6= 1 = γG are straightforward to deduce).

Agents have standard additive intertemporal preferences, with a constant discount factor

β > 0. They therefore rank consumption and public good streams, denoted respectively by

(ct)t≥0 and (Gt)t≥0, using the intertemporal criterion
∑∞
t=0 β

tU(ct, Gt).

2.2 Risks

We consider a general setup where agents face both aggregate risk, time-varying unemployment

risk, and idiosyncratic productivity risk, as modeled by Krueger, Mitman, and Perri (2017). As

will be clear in the quantitative analysis below, this general setup allows us to match the wealth

distribution and a realistic dynamics of the labor market.

Aggregate risk. The aggregate risk will affect both aggregate productivity and the unem-

ployment risk. Formally, the aggregate risk is represented by a probability space (Z∞,F ,P).

At a given date t, the aggregate state is denoted st and takes values in the state space Z ⊂ R+.

We assume the aggregate risk to be a Markov process.1 The history of aggregate shocks up to

time t is denoted zt = {z0, . . . , zt} ∈ Zt+1. Finally, the period-0 probability density function of

any history zt is denoted mt(zt).

For the sake of clarity, for any random variable Xt : Zt → R, we will denote Xt, instead of

Xt(zt), its realization in state zt,

Employment risk. At the beginning of each period, agents face an uninsurable idiosyncratic

employment risk, denoted et at date t. The employment status et can take two values, e and

u, corresponding to employment and unemployment respectively. We denote by E = {e, u}

the set of possible employment status. Employed agents with et = e can supply inelastically

one unit of labor, and they earn a before-tax real wage, denoted wt at date t. Unemployed

agents with et = u cannot work and will receive unemployment benefits financed by social
1In the quantitative part, we will assume that it more specifically follows an AR(1) process.
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contributions, that we describe further below. A history of idiosyncratic shocks up to date t is

denoted et = {e0, . . . , et} ∈ {0, 1}t+1.

The employment status et follows a discrete Markov process with transition matrixMt(zt) ∈

[0, 1]2×2 that is assumed to depend on the history of aggregate shocks up to date t. The job

separation rate between periods t− 1 and t is denoted lt(zt), while ft(zt) is the job finding rate

between t− 1 and t. The time-varying transition matrix across employment status is therefore:

Mt(zt) =

 1− ft(zt) ft(zt)

lt(zt) 1− lt(zt)

 . (2)

As in Krusell and Smith (1998) and Krueger, Mitman, and Perri (2017), we assume that the

share of the population that unemployed only depends on the current aggregate state, and that

transition probabilities s and f actually only on the current and past aggregate states. We

denote by ηu,t(zt) and ηe,t(zt) the populations of unemployed and employed agents respectively

– where ηu,t(zt) + ηe,t(zt) = 1 at all dates.

Productivity risk. The individual productivity of agents is stochastic. At any date t, the

individual productivity status is denoted yt and takes values in a finite set Y ⊂ R+. The

cardinality of the set Y is denoted Card Y and is thus the number of different idiosyncratic pro-

ductivity levels. Large values of yt correspond to highly productive agents. The before-tax wage

earned by an employed agent will be the product of an aggregate wage denoted wt, depending

on aggregate shock, and of the individual productivity y: It is ytwt An unemployed agent will

also carry an idiosyncratic productivity level that will affect her unemployment benefits.

The history of productivity shocks of a given agent up to date t is denoted yt = {y0, . . . , yt}.

The productivity status follows a first-order Markov process where the transition probability

from state yt−1 = y to yt = y′ is constant and denoted πyy′ . In particular, it is independent

of the employment status of the agent. We denote by ηy the share of agents endowed with

individual productivity level y. This share is constant through time because of assumptions on

transition probabilities πyy′ .

The individual status of each agent is characterized by her employment status e and personal

productivity level y. At any date t, we will denote by st = (et, yt) the date-t individual status

of any agent. The set of possible individual status is denoted S = E × Y. Finally, we denote as

st a history until period t: st = {..., st−1,st}.
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2.3 Production

The good is produced by a unique profit-maximizing representative firm. This firm is endowed

with a production technology that transforms, at date t, labor Lt and capitalKt−1 into Yt output

units of the single good. The production function is a Cobb-Douglas function with parameter

α ∈ (0, 1) featuring constant returns-to-scale. The capital must be installed one period before

production and the total productivity factor Zt is stochastic. Denoting as δ > 0 the constant

capital depreciation, the output Yt is formally defined as follows:

Yt = ZtK
α
t−1L

1−α
t − δKt−1. (3)

where Lt is the labor supply expressed in efficient units. We have:

Lt = ηe,t(z)
∑
y∈Y

ηyy.

The total productivity factor is simply the exponential of the aggregate shock zt:

Zt = exp(zt). (4)

The two factor prices at date t are the aggregate before-tax wage rate wt and the capital return

rt. As we explain further below, we assume that while labor is taxed at a linear rate, capital is

not taxed. The profit maximization of the producing firm implies the following factor prices.

wt = (1− α)Zt
(
Kt−1
Lt

)α
, (5)

rt = αZt

(
Kt−1
Lt

)α−1
− δ. (6)

2.4 Social contributions and taxes

The government raises both social contributions and labor taxes, which have two distinct ob-

jectives. Social contributions solely serve to finance unemployment benefits, while labor tax

serves to finance the public good. We have chosen the above setup, since it features one of the

simplest fiscal system we can think of. It will simplify the comparison between complete and

incomplete-market economies. Indeed, the labor tax is non-distorting as the labor supply is

inelastic. As a consequence, the complete market allocation reproduces the first-best allocation.

The difference between complete and incomplete market economies will only result from the

distributional effect of labor tax.

7



Unemployment insurance. Unemployed agents receive at any date an unemployment ben-

efit that is equal to a constant fraction of the wage the agent would earn if she were employed.

The replacement rate, denoted φ, being constant, the unemployment benefit of an agent endowed

with productivity y equals φwty.

The unemployment benefits are financed by social contributions. These contributions are

paid by all agents, no matter whether they are employed or unemployed. Contributions amount

to a constant proportion τt(z) of the wage and this proportion is identical for all agents, but

depends on the current aggregate state z. The contribution τt is set such that the unemployment

insurance (UI) scheme is balanced at any date t, since we rule out the possibility of social debt.

The balance budget of the unemployment insurance scheme can be expressed as:

ηu,t(z)
∑
y∈Y

ηyφwty = τt
∑
y∈Y

ηy (ηu,t(z)φwty + ηe,t(z)wty) ,

where we use the fact that the individual productivity level is independent of the employment

status. We deduce that the social contribution is:

τt(z) = φηu,t(z)
ηe,t(z) + φηu,t(z)

= 1
1 + 1−ηu,t(z)

ηu,t(z)φ

. (7)

The contribution obviously raises with the replacement rate –which is constant– and the popu-

lation of unemployed agents – that varies along the business cycle.

Fiscal policy. The labor tax τLt finances a quantity Gt of public goods. The government is

prevented from raising public debt, such that the government budget is balanced at any date.

Formally, the government budget constraint can be expressed as:

Gt = τLt wtLt. (8)

As a summary an employed agent having a productivity yt will have a real labor income(
1− τt − τLt

)
wt.

2.5 Agents’ program and resource constraints

2.5.1 Sequential formulation

We consider an agent i. She can save in a riskless asset that pays off the post-tax gross interest

rate 1 + rt. She is prevented from holding too negative savings and the latter must remain

greater than an exogenous threshold denoted −ā. At date 0, the agent chooses her consumption
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(cit)t≥0 and her saving plans (ait)t≥0 that maximize her intertemporal utility, subject to a budget

constraint and the previous borrowing limit. Formally, her program can be expressed as follows:

max
{ci

t,a
i
t}
∞
t=0

E0

∞∑
t=0

βtU(cit, Gt) (9)

cit + ait = (1 + rt)ait−1 + (1− τt − τLt )
(
1ei

t=e + φ1ei
t=u

)
wt, (10)

ait ≥ −ā, (11)

where 1ei
t=e is an indicator function equal to 1 is eit = e and to 0 otherwise. The budget

constraint (10) is very standard and the expression (1− τt− τLt )wt is a compact formulation for

the gross (i.e., before-tax) wage of the agent, depending on whether she is employed (eit = e) or

unemployed (eit = u). We now turn to the economy-wide constraints. First, the financial market

clearing implies the following relationship:
ˆ
i
ait`(di) = Kt. (12)

The clearing of goods market implies that the total consumption, made of private individual

consumption, private firm consumption and public consumption equals total supply, made of

output and past capital: ˆ
i
cit`(di) +Gt +Kt = Yt +Kt−1. (13)

Since every employed agent inelastically supplies one unit of labor, while unemployed agents

do not work, the labor Lt in efficient units is defined as:

Lt = ηe,t
∑
y∈Y

ηyy,

since agents have different individual productivities.

Using the transition matrix Mt in equation (2), we deduce the law of motion for the share

of unemployed agents ηu,tis:

ηt,u = 1− ηe,t = lt(1− ηt−1,u) + (1− ft)ηt−1,u. (14)

The share of agents ηy with productivity y is defined as follows:

ηy =
∑
y∈Y

ηy′πy′y.

We can finally formulate our equilibrium definition.

9



Definition 1 (Sequential equilibrium) A sequential competitive equilibrium is a collection

of individual allocations
(
cit, a

i
t

)
t≥0,i∈I , of aggregate quantities (Gt, Lt,Kt)t≥0, of price processes

(wt, wt, rt)t≥0, and of social contributions and capital taxes (τt, τLt )t≥0, such that, for an initial

wealth distribution
(
ai−1

)
i∈I , and for initial values of capital stock K−1 =

´
i∈I a

i
−1`(di), of capital

tax τ0, and of the initial aggregate shock s−1, we have:

1. given prices, individual strategies
(
cit, a

i
t

)
t≥0,i∈I solve the agents’ optimization program in

equations (9)–(11);

2. financial and good markets clear at all dates: for any t ≥ 0, equations (12) and (13) hold;

3. the government budget constraint (8) and the UI scheme balance (7) hold at any date;

4. factor prices (wt, rt)t≥0 are consistent with (5), and (6).

3 Solving the model with a history-representation

The previous model is a typical heterogeneous-agent model. As time goes by, heterogeneity is

unbounded as agents with different idiosyncratic histories have different wealth and consumption.

We now provide our projection theory to obtain a finite-dimensional state-space representation.

The basic idea is to group agents according to their idiosyncratic histories at any period.

3.1 Partitions

A partition P can be seen as a collection of set of histories h ∈ P such that idiosyncratic history

st at any period belongs to exactly one element of P : There is one and only one elements

h ∈ P, such that et ∈ h. Some direct implications follow. First, there will be some heterogeneity

within each element p as, in general, many agents will belong to the same elements2 h. Second,

as idiosyncratic histories change after the realization of the idiosyncratic risk, agents move from

an element h ∈ P to an element h′ ∈ P after at any period. When an agent is in an element

h in any period t, the probability that it belongs to any element h′ the next period is denoted

Πt+1,h,h′ and it can be time-varying in the general case.

The idea of our theory is consider elements of the partition instead of the individual agents.

For the sake of concreteness, we now present two types of partitions, explicit partitions used in
2To simplify the discussion, we say that an agent belongs to p, when it has experienced an idiosyncratic history

et ∈ p.
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various papers, and then implicit partition, using insight from the steady-state distribution of

wealth.

Explicit partition. First, a finite history of lengthN ≥ 1 is a vector sN = (s−N+1, . . . , s0) ∈

SN of length N representing the realizations of idiosyncratic status over the N consecutive pre-

vious periods. A first simple construction of a partition is to consider agents with the same value

of sN as being in the same elements of the partition. In words, agents with the same realization

of idiosyncratic risk for the last Nperiods are considered in the same h of P. The number of

elements of P is (#S)N , which can be a large number.

Even though it has not been formalized in those terms, such partitions have already been

used in the literature. First, Challe, Matheron, Ragot, and Rubio-Ramirez (2017) use a three-

state partition, which is ({e} , {eu} , {uu}). In each period, any agent can be in one and only

one of these three states: employed, unemployed now and in the previous period, or unemployed

now and employed before. Furthermore, the current employment status uniquely pins down the

productivity status. This three-state partition is shown to be sufficient to capture time-varying

precautionary savings. The transition matrix between these three states is easy to derive from

labor market transitions. For instance Πt,{e},{eu} = lt , Πt,{eu},{e} = Πt,{uu},{e} = ft, and finally

Πt,{eu},{uu} = 1 − ft, where we recall that lt and ft are the job-transition probabilities –see

equation (2).

Second, LeGrand and Ragot (2017) use a more general truncation space in a model where

individual productivity is pinned down by employment status.. For a given parameter N , the

partition, denoted PN , contains all idiosyncratic histories of length N , or more formally all

vectors (s−N+1, . . . , s0) ∈ SN . In this case, the transition matrix between partition elements

can be easily derived from the transition matrix Mt.

Although intuitive, this construction can generate a huge number of elements h to follow, as

their number (Card S)N grows exponentially. Considering all these elements can be inefficient,

as we may follow some histories with very low probabilities to occur. As a consequence, using

implicit partition appears more efficient in economies with many idiosyncratic states.

Implicit partitions using the steady-state distribution of wealth An implicit par-

tition can be defined using the steady-state distribution of wealth of the model, when there is

no aggregate shocks (i.e.. Zt = 1). In this case, it is known that there is, in equilibrium, an

invariant steady-state distribution of beginning-of-period wealth (a, s) 7→ Γ (a, s) for [−ā; +∞[

and s ∈ S such that the number of agents having a current state s and a wealth in the interval

[a0; a1] is
´ a1
a0
dΓ (a, s).
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One can define implicitly a partition as a collections of sets (Bk)k=1,...,K , Bk ⊂ R, such that
[−ā,+∞[= ∪k=1,...,KBk,

Bk ∩Bk′ = ∅ for all k 6= k′.

Elements of h ∈ P can be defined as the elements (s,Bk) for s ∈ S and k = 1..K. In words,

we use a partition in the space of wealth for any agent in state s to implicitly defined set of

histories.

The transition probabilities Πh,h′ across elements p and p′ can be found by simulations of

the model without aggregate shocks. More efficiently, they can be derived from the steady state

policy rules. Knowing the policy rule and the beginning of period wealth within the set Bk and

the type s, one can derive the end-of-period wealth and then the share of agents moving to any

elements h = (s,Bk) to h′ = (s′, Bk′) .

Introducing aggregate shocks in the previous construction doesn’t change the definition of

elements of P (which are given histories) but only transitions probabilities Πt,h,h′ which become

time-varying if and only if the transition matrix Mt, defined in Section 2.2, is time-varying.

Indeed, if there s only TFP risk, and no time-varying aggregate risk, then for any idiosyncratic

history st at period t, the probability to have any other history st+1 at period t + 1 is not

time-varying. As a consequence, transitions Πh,h′ are constant.

Comparison with Reiter’s algorithm.. At this stage, it may be useful to compare the

previous construction with the one of Reiter (2009) to clarify the difference. Reiter doesn’t follow

histories but the time-varying number of agents within given brackets of wealth. After a TFP

shock, even if idiosyncratic risk is not time-varying, the number of agents within any bracket

of wealth is time-varying, as saving decisions change after a TFP shock. As a consequence,

transition probabilities Πt,h,h′ would be time-varying in Reiter’s algorithm. In words, when

idiosyncratic risk is not time-varying, in the Reiter’s algorithm, the boundaries in terms of

wealth defining brackets are constant, and the number of agents in any bracket is time-varying;

In our setup, the number of agents within each set is constant (such as transitions among these

sets) but the boundaries of any set would be time-varying, as saving decisions are time-varying.

This difference will make it possible to solve for optimal policies.

3.2 Projection of the model

We now use a general partition P, express the dynamics of the projected model.
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3.2.1 Aggregating variable

The core idea of the model projection consists in following average values for each element h ∈ P.

First, following this line of reasoning, a share of the agents’ population is represented by the

same history. This share, that we denote as Sh,t, depends on the history h ∈ Pt and on the date

t. Formally, the evolution of this population share is defined as follows:

Sh,t =
∑

h̃∈Pt−1

Sh̃,t−1Πt,h̃,h.

It now remains to find explicit law of motions of average values within each set h. For the

sake of generality, we consider a generic individual choice variable that we denote X and that

can represent savings or consumption for instance. As any individual variable, this variable will

depend at date t on the agent’s initial saving a, the history of her individual statuses and of

aggregate shocks up to date t. The variable will therefore be denoted as Xt
(
a, st, zt

)
at date t.

The projection on the histories consists in averaging the variable among all agents sharing

the same history, as if all agents with history h would be represented by a unique representative

agent with history h, endowed with the average variable value. More formally, the variable value

for the history h ∈ Pt, which is denoted as Xh,t(zt) or simply Xh,t, is defined as:

Xh,t =
´
a

∑
et∈hXt

(
a, st, zt

)
da

Sh,t
. (15)

This is the basic projection operation. Other operations are also useful but for the sake of

simplicity, we detail them in Appendix A.

3.3 The projected model

We consider the economic model presented in Section 2. The model is characterized by the

following set of equations. Denoting by νt the Lagrange multiplier associated to the individual

budget constraint, we obtain:

u′
(
ct
(
a, et, zt

))
= βE

[
(1 + rt+1(zt+1))u′(ct+1

(
a, et+1, zt+1

)]
+ νt

(
a, et, zt

)
,

(16)

νt
(
a, et, zt

)
≥ 0,

νt
(
a, et, zt

) (
at
(
a, et, zt

)
+ ā

)
= 0.
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The individual budget constraint is:

c
(
a, et, zt

)
+ at

(
a, et, zt

)
= (1 + rt(zt))at−1

(
a, et−1, zt−1

)
+ (1− τt− τLt )(1ei

t=e +φ1ei
t=u)wt(zt),

(17)

while the social contribution τt is unchanged and defined in equation (7). Costs of labor w and of

labor r have the same expressions as above and are defined in equations (5) and (6) respectively.

Finally, the financial market clearing is given by:
ˆ
a

∑
st∈St

at
(
a, st, zt

)
da = Kt

(
zt
)
. (18)

We will project the model on a given history partition P. We start with defining the quantity

ãh,t as follows:

ãh,t = 1
Sh,t

∑
h̃∈P

Πt,h̃,hSh̃,t−1ah̃,t−1, (19)

where ah,t is the average end-of-period asset holding for asset for history h defined as in equa-

tion (15). The quantity ãh,t is the beginning-of-period wealth of agents with history h that is

computed as the average wealth of agents transiting from history h̃ at date t − 1 to history h

at t. This is similar to a pooling operation, where the wealth of agents, with history h̃ at date

t − 1 but endowed with history h at t, is pooled together and equally shared among all agents

with history h. Using this notation, the individual budget constraint can be expressed as:

ch,t + ah,t = (1 + rt)ãh,t + (1− τt)(ηe,t + φηu,t)wt. (20)

This aggregated budget constraint can be interpreted as the budget constraint of a representative

agent with history h. The financial clearing equation (18) becomes:

Kt =
∑
h∈P

St,hat,h =
∑
h∈P

St+1,hãt+1,h, (21)

where everything happens as if we had Card P agents, each having a weight St,h and being

endowed with wealth at,h. As the previous equations are linear, their projection is simple.

This is not the case for the Euler equations. Using the techniques presented in Appendix,

We show that one can construct aggregate Euler equations among elements of the partition

P, introducing additional variables, which captures the time-varying heterogeneity with each
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elements h ∈ P.The Euler equations (16) become:

u′ (ch,t) = βE(1 + rt+1)
∑
h′∈P

Πt+1,h,h′ϕt+1,h,h′u
′(ch′,t+1) + νh,t

ξu
′
h,t

, (22)

with: ϕt+1,h,h′ = ψct,h,h′
Sh′,t+1
Sh,t

ξu
′
h′,t+1
ξu
′
h,t

. (23)

The quantity ξ defined in equation (57) reflects the non-linearity of u′ in the aggregation , while

the quantity ψ defined in equation (59) reflects the aggregation of an expectation function.

These additional variables will actually be simple to compute, as we show below.

3.4 Simulating the projected model

3.4.1 The steady-state

We consider a steady-state partition P. We make the assumption that all credit-constrained

agents are endowed by a unique particular history denoted hcc.

Assumption A (Credit constrained histories) There exists an element hcc ∈ P, such that

all agents having histories in hcc are credit constrained, and only them.

We start with the probability distribution among agents with history h ∈ P and asset holding

a, denoted ΓP (a, h) defined over A×P, where A = [−a,∞) is the saving space. This probability

captures the heterogeneity in wealth among agents in the same set h. It can be derived from

the steady-state distribution Γ of the Bewley model – that is known to exist and to characterize

the equilibrium (see Huggett 1993). We can deduce the size of the population of agents with

history h, that we denote Sh:

Sh =
ˆ
A

ΓP (da, h) , (24)

which is simply the measure of agents with history h, independently of their asset holdings.

We now turn to the policy functions and asset choices. The beginning-of-period asset holding,

denoted ãh is:

ãh =
ˆ
A
a

ΓP (da, h)
Sh

,

which is the average asset holding among the population with history h. The asset choice, a′h,
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which is the average end-of-period asset holding of agents with history h can be expressed as:

a′h =
ˆ
A
ga(a, e0(h))ΓP (da, h)

Sh
, (25)

where e0 : h ∈ P → e0(h) ∈ {0, 1} returns the current idiosyncratic state for any history h. We

proceed similarly for the average consumption choice –denoted ch– and the average Lagrange

multiplier of the credit constraint –denoted νh. We obtain the following expressions:

ch =
ˆ
A
gc(a, e0(h))dΓP (da, h)

Sh
, (26)

νh =
ˆ
A
ν(a, e0(h))dΓP (da, h)

Sh
. (27)

Note that νh is positive if and only if a positive measure of agents having history h face binding

credit constraints.

We deduce that the steady-state equilibrium is characterized by the following equations:

ch + ah = (1 + r)ãh + (1− τt − τLt )(ηh,e + φηh,u)w, (28)

u′ (ch) = β(1 + r)
∑
h′∈P

Πh,h′ϕh,h′u
′(ch′), for h 6= hcc, (29)

ahcc = −ā, (30)∑
h∈P

Shah = K, (31)

ãh =
∑
h̃∈P

Πh̃,hSh̃ah̃. (32)

The other quantities (w, r, ηu, ηe, and τ) can easily be deduced from their definitions.

The key equation is the Euler equation (29), where the expression of ϕh,h′ is ϕh,h′ =

ψch,h′
Sh′
Sh

ξu′
h′

ξu′
h

– see equation (23). As explained above, the terms in ϕh,h′ reflects two elements:

(i) the non-linearity of u′ in ξ, and (ii) the issues related to conditional expectation aggregation

in ψ. This second effect comes the fact that in general, starting from a given history, not all

histories can be attained. This effect disappears at the steady-state and the expression of the

Euler equation can be simplified, as stated in the following Proposition.

Proposition 1 (Allocation) The Euler equation can be written as, for h ∈ P,

ξhu
′ (ch) = β(1 + r)

∑
h′∈P∞

Πh,h′ξh′u
′(ch′) + νh/ξ

u′
hcc .
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Moreover, if ϕh,h′ → 1, then ξh → Shξ
u′
h .

Proof. We define Π = (Πh,h′)h,h′∈P , Πϕ = (Πh,h′ϕh,h′)h,h′∈P , ν = (νh)h∈P , and I the identity

matrix of dimension equal to the cardinal of P. The Euler equations (29) for all h ∈ P∞ become

under matrix form:

(I − β(1 + r)Πϕ)u = ν/ξu
′
hcc .

We define the vector ũas: ũ = (I − β(1 + r)Π)−1 (I − β(1 + r)Πϕ)u. We can easily check

that:

ũ = β(1 + r)Πũ+ ν/ξu′hcc

Defining ξh = ũh/u
′ (ch), we then deduce that for all h ∈ P, the following equation holds:

ξhu
′ (ch) = β(1 + r)

∑
h∈P∞

Πh,h′ξh′u
′(ch′) + νh/ξ

u′
hcc , (33)

which proves the first part of the proposition.

For the second part, let us now assume that ψct,h,h′ = 1. Then ϕh,h′ =
ψc

h,h′Sh′

Shξ
u′
h

ξu
′
h′ = Sh′ξ

u′
h′

Shξ
u′
h

and:

Shξ
u′
h u
′ (ch) = β(1 + r)

∑
h′∈P∞

Πh,h′Sh′ξ
u′
h′u
′(ch′) + νh

ξu
′
hcc

.

We deduce as a consequence (from uniqueness and continuity) that ξh = Shξ
u′
h .

3.4.2 Final formulation of the projected model

The previous construction provides a simple approximation procedure to simulate the model

with aggregate shocks. The key assumption that we make to make the model easy to simulate is

to assume that the steady-state coefficient (ξh)h∈P that are deduced from Proposition 1 remain

unchanged in the presence of aggregate shocks. We further assume that agents with history hcc

remain the sole credit-constrained agents in the model, even in the presence of aggregate shocks.

We finally obtain the following final formulation of the projected model
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ch,t + ah,t = (1 + r)ãh,t + (1− τt − τLt )(ηh,e,t + φηh,u,t)w,

ξhu
′ (ct,h) = βE(1 + rt+1)

∑
h′∈P

Πt+1,h,h′ξh′u
′(ct+1,h′), for h 6= hcc, (34)

ahcc = −ā,∑
h∈P

St,hat,h = Kt,

ãt,h =
∑
h̃∈P

Πt,h̃,hSt−1,h̃at−1,h̃,

which is similar to the initial formulation, except for the Euler equation (34), where the coefficient

(ξh)h∈P are deduced from the steady-state (see Proposition 1).

4 Ramsey program

4.1 Optimal policies

We now derive optimal Ramsey policies in the Bewley model. Comparing the Ramsey allocations

in our setup with those of a complete insurance-market economy will enable us to identify the

specific role of redistribution and the lack of insurance. However, solving for Ramsey policies

in the general case is difficult. Indeed, one has to introduce additional state variables, such as

the distribution of Lagrange multipliers for the relevant individual constraint.3 Solving for this

joint distribution is particularly difficult.

The main idea of the current method is to solve for the Ramsey optimal policy for the

complete model and then to project the resulting equations onto a partition P. We first explain

the methodology to solve the model and project solutions onto P, we then describe our algorithm

for computing Ramsey policies and we finally discuss the relationships with other methods.

The Ramsey problem consists in determining the fiscal policy –here equivalently, public

spending Gt and labor tax rate τLt – that corresponds to the “best” competitive equilibrium,

according to an aggregate welfare criterion. In other words, the planner has to select fiscal

policy and individual choices, subject to government and individual budget constraints (36) and

(37), and subject to Euler equations (38) –that guarantee the optimality of individual choices.
3The relevant individual constraint depends on the way the Ramsey problem is written. As we discuss below,

in the Lagrangian approach of Marcet and Marimon (2011), these relevant constraints are the individual Euler
equations. Bhandari, Evans, Golosov, and Sargent (2016) use a primal approach and thus consider the individual
Lagrange multiplier on the budget constraint.
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Formally, the Ramsey problem can be written as follows:

max
(τL

t ,Gt,(ai
t,c

i
t))

t≥0

E0

[ˆ
i

∞∑
t=0

βtU(cit, Gt)`(di)
]
, (35)

Gt ≤ τLt wtLt. (36)

for all h ∈ P:

cit + ait ≤ (1 + rt)ait−1 + (1− τt − τLt )
(
1ei

t=e + φ1ei
t=u

)
wt, (37)

u′
(
cit

)
= βE

[
(1 + rt+1)u′(cit+1)

]
+ νt, (38)

νt(ait + a) = 0, (39)

Kt =
ˆ
i
ait`(di), Lt = ηe,t

∑
y∈Y

ηyy, (40)

cih,t, (aih,t + a) ≥ 0. (41)

Other constraints are the evolution equation of the population shares of employed and unem-

ployed agents (14) and the definition of the social contribution τt (7).

It is easy to derive first-order conditions. We discuss in Section 4.2 below issues related

to second-order conditions. First, we denote by βtλit the discounted Lagrangian multiplier of

the Euler condition (37) for agent i, and by βtµt the Lagrangian multiplier on the government

budget constraint (36). The Lagrange multiplier λit measures how costly it is for the planner to

internalize the Euler equation. To ease the interpretation of first-order conditions, we introduce

the following notation:

ψit = u′
(
cit

)
−
(
λit − λit−1(1 + r)

)
u′′
(
cit

)
, (42)

which is the social valuation of liquidity of agent i. Indeed, if agent i receives one additional unit

of goods today, this additional unit will be valued u′
(
cit
)
. This value only accounts for private

valuation, but should also include the effect on the internalization cost of Euler equations.

Indeed, this additional unit affects agent’s incentive to save from period t − 1 to period t and

from period t to period t+ 1. This effect is captured by the second term at the right hand side,

proportional to u′′(cit).

We now provide the expressions of the first order conditions of the Ramsey program. Of

note, as we discuss in Section 4.2, these conditions are necessary, but not sufficient, to guarantee

19



the existence of an internal solution.

µt = v′ (Gt) (43)

µtLt =
∑
st∈St

ˆ
a
(1− τt − τLt )

(
φ1e0(st)=u + 1e0(st)=e

)
ψt
(
a, st, zt

)
da, (44)

ψt
(
a, st, zt

)
= βEt

[
(1 + rt+1(zt+1))ψt+1

(
a, st+1, zt+1

)]
(45)

where e0(st) denotes the current employment status of agent with individual status st.

4.2 Remark on the convexity of the program

A traditional problem with Ramsey program is that the set of feasible allocations is not convex.

This problem is quite general and also exists in a representative-agent economy. The non-

convexity is related to constraint associated to Euler equation – which is neither convex nor

linear. Therefore, if first-order conditions are still necessary, they may be non-sufficient and

generate three different types of problems: 1) the first order condition may characterize a local

minimum; 2) the steady-state solution may not exist; 3) multiple equilibria may exist.

The first concern can be easily addressed, for instance by checking that small variations

around the solution allocation do not yield a higher aggregate welfare. The second concern

has been raised by Straub and Werning (2014), who show that in some cases the solution of

the planner may not be an interior solution with constant real variables.4 The possibility to

solve the model with perturbation methods helps solve this issue. Indeed, studying the behavior

of the model after perturbing the steady state with small aggregate shocks, provides insight

regarding the subsequence convergence –or not– toward the interior solution. The last concern

is more difficult to properly address. Up to our knowledge, the only imperfect solution consist

sin exploring the convergence for various initial values and checking that the local maximum is

indeed a global one.
4Recent contributions such as Chari, Nicolini, and Teles (2016) show that the behavior of Lagrange multipliers

depends on the set of instruments available to the planner. In addition, Chen, Chien, and Yang (2017) show
theoretically that in an incomplete insurance-market model that the solution is interior.
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4.3 Projecting Ramsey conditions

We follow the same path as in Section 3 for the Ramsey program. We start with two definitions:

λh,t =
ˆ
a

∑
st∈h

λt
(
a, st, zt

)
, (46)

Λh,t =
∑
h′∈Pt−1 Sh′,t−1λh′,t−1Πh′,h,t

Sh,t
, (47)

ψh,t = u′ (ch,t)− (λh,t − Λh,t(1 + rt))u′′ (ch,t) + κ1
h,t. (48)

The quantities λh,t and ψh,t have straightforward interpretations. They are the history counter-

parts of the Lagrange multiplier λ and of the liquidity valuation ψ. The variable Λh,t in equation

(47) new and is the average per capita cost of internalizing the previous period Euler equation

for agents with history h today. Roughly speaking, this is the past average of past values of

Lagrange multiplier (λh,t−1)h∈P . The residual κ1
h,t is the time-varying error in the aggregation

procedure. This term captures both time varying heterogeneity within each element of the

partition and the time-varying correlation between Lagrange multipliers and marginal utilities.

The exact expression of this residual isn’t relevant, as we will make simplifying assumptions to

simulate the model.

Aggregating the Ramsey first-order equations (43)–(45) yields:

µt = v′ (Gt) , (49)

µtLt = (1− τt − τLt )
∑
h∈P

Sh,t (φηu,t + ηe,t)ψh,t + κ2
t , (50)

ψh,t = βEt(1 + rt+1)ψψt+1,h,h′ψh,t+1. (51)

The residual κ2
t captures the time-varying heterogeneity within elements of the partitions, con-

cerning ψh,t Additionally, we also have an aggregated version of the budget constraint (20), of

the Euler equation (22), of the financial market clearing (21). These equations are the same as

in the initial aggregation of Section 3.2. As in the initial aggregation, a pooling-like equation

(19) also holds.

However, as in Section 3.4, further assumptions are needed for allowing us to simulate the

model. The previous equations are exact first-order conditions for the optimal Ramsey policy.

The approximation to simulate the model is the assumption that t κ1
t = κ2

t = 0, ψψt+1,h,h′ = 1,

and ϕt+1,h,h′ remains constant. In words, we neglect time-varying heterogeneity within elements

of P. As in the initial projection, we deduce the quantities (ϕh,h′)h,h′ from the steady-state.
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The equations that we simulate are the following ones: and then simulate

Λh,t ≡
∑
h′∈P Sh′,t−1λh′,t−1Πh′,h,t

Sh,t
,

ψh,t = u′ (ch,t)− (λh,t − Λh,t(1 + rt))u′′ (ch,t)

and

Λh,t =
∑
h′∈P Sh′,t−1λh′,t−1Πh′,h,t

Sh,t
, (52)

ψh,t = u′ (ch,t)− (λh,t − Λh,t(1 + rt))u′′ (ch,t) (53)

µt = v′ (Gt) , (54)

µtLt = (1− τt − τLt )
∑
h∈P

Sh,t (φηh,e + ηh,u)ψh,t, (55)

ψh,t = βEt(1 + rt+1)ψh,t+1, (56)

without mentioning history budget constraints, history Euler equations, pooling-like equations,

financial market clearing condition, as well as the definitions of factor prices r and w, of the

social contribution τt, and the dynamics of population shares ηe,t and ηu,t.

4.4 Comparison with other methods

To our knowledge, only three other papers provide general solution method to derive optimal

Ramsey policies in incomplete insurance-market models.

First, Açikgöz (2015) provides an algorithm to solve for the steady-state allocation of the

Ramsey program. He assumes some specific functional forms and show the convergence of the

algorithm. This is a way to find the joint distribution over Lagrange multipliers and initial asset

holdings. At this stage, we are not aware of any application of this algorithm to an economy

with aggregate shocks.

Second, Nuño and Moll (2017) use a continuous-time approach and mean-field games to

characterize optimal steady-state allocations. Their algorithm develops a projection method to

characterize the relevant value functions and Lagrange multipliers. Our solution makes a more

extensive use of the steady-state properties of the Bewley model, that enables us to properly

distort the projection on a relevant grid. Although our model is expressed in discrete time, a

methodology similar to ours can be applied to continuous-time models. An additional gain of
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our method in discrete time is that introducing aggregate shocks is straightforward, as we have

seen above.

Third, Bhandari, Evans, Golosov, and Sargent (2016) present a solution method for models

with aggregate shocks. Their solution relies on perturbation methods around time-varying

allocations (and not around the steady-state). They solve the model by approximating the

actual distribution by a very large number of agents. As we use more extensively the steady-

state properties of the Bewley model, we can simulate the economies with a very small number

of agents –see Section 5. As a consequence, our solution allows us to study Ramsey problems

with a number of instruments.

5 Numerical examples

We now provide two numerical examples to apply the previous setup. In the first one, we consider

zero public spendings (as in the model projection of Section 3) and thus we do not solve for

optimal policies. We compute the dynamics of the model with TFP shocks and compare the

current algorithm with alternative ones, such as Krusell and Smith (1998). This analysis is

done to show how our methodology compares to other ones in a standard model with aggregate

shocks. In the second example, we solve for the optimal fiscal policy to investigate the optimal

provision of the public good Gt along the business cycle. These examples are chosen to be

simple, and to enable us as to present in a very transparent framework the properties of the

methodology we propose.

5.1 Calibration of the model

We provide a quarterly calibration of the model that follows the parameter choice of Krueger,

Mitman, and Perri (2017). This calibration aims at reaching three two of moments. First,

the process for the aggregate shocks is set to match the probability of severe recessions in

the US postwar economy, 1948-2014.III. A severe recession is defined as a period where the

unemployment rate is above 9. The frequency of severe recessions is 16.48% with an expected

length of 22 quarters. The average unemployment rate during these recessions is 8.39%, whereas

the average unemployment rate in good times is 5.33%. The average drop in GDP per capita is

7% compared to normal times.

In the benchmark model, this dynamics is captured by the following AR(1) process for TFP
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shocks:5

zt = (1− ρz) + ρzzt−1 + εzt ,

where εzt ∼ N
(
0, σ2

z

)
, with ρz = 0.9464 and σz = 0.4%.

Unemployment risk. As explained above, we assume that both the job separation and job

finding rates are functions of current and past values of the TFP level. It should be clear that

this assumption is made here to compare our simulation techniques with standard methods.6

We have the following processes for employment transition probabilities:

ft = fSS + ρf0zt + ρf1zt−1,

lt = lSS + ρl0zt + ρl1zt−1,

where fSS and lSS are set to their postwar values. We find fSS = 0.786 and lSS = 0.048. The

postwar dynamics is consistent with
(
ρf0 , ρ

f
1

)
= (3.483, 0.436) and

(
ρl0, ρ

l
1

)
= (−0.613, 0.219).

As expected and as is consistent with the labor literature, the job separation rate is less volatile

than the job finding rate and is countercyclical on impact. Finally, following standard estimates,

the replacement rate is assume to be φ = 50%.

Productivity risk. The income risk conditional on employment is estimated by Krueger,

Mitman, and Perri (2017) using annual data. Translating these esimates into quarterly values

(with the same autocorrelation and variance), we deduce the following process:

log yt = ρy log yt−1 + εyt ,

with εt ∼ N
(
0, σ2

z

)
. We find an autocorrelation equal to ρy = 0.9923 and a variance equal to

σ2
y = 0.0098. The Rouwenhorst procedure is then used to discretize the process log yt into a

seven-state Markov process. As agents can be either employed and unemployed, each agent can

be in 14 = 7× 2 idiosyncratic states.
5Krueger, Mitman, and Perri (2017) estimate this process with a two-state Markov process, in order to use the

Krusell and Smith (1998) algorithm. Our AR(1) representation is consistent with their estimation. In Appendix,
we provide their estimated values for the sake of comparison.

6We could easily simulate the model with many aggregate shocks, as in Challe, Matheron, Ragot, and Rubio-
Ramirez (2017) to get more realistic second-order moments compared to the data. We do not follow this route
here to focus on a simple case.
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Parameter Description Value

β Discount Factor 0.99

α Capital share 0.36

δ Depreciation rate 0.025

φ Replacement rate 0.5

fSS Average job finding rate 0.786

lSS Average job separation rate 0.048

φ Replacement rate 0.5

ρz Autocorrelation TFP 0.9464

σz Standard deviation TFP shock 0.004(
ρf0 , ρ

f
1

)
Corr. job find. rate with TFP and TFP(-1) (3.483, 0.436)(

ρl0, ρ
l
1

)
Corr. job sep. rate with TFP and TFP(-1) (−0.613, 0.219)

ρy Autocorrelation idio. productivity 0.9923

σy Standard dev. idio productivity 0.0990

Table 1: Parameter values. See main text for descriptions and targets

Production function. The production function is F (K,L) = ZKαL1−α − δK, where the

capital share is α = 0.36 and the depreciation rate is δ = 0.025.

Preferences. We assume a log period utility function (σ = 1) and a discount factor equal to

β = 0.99 to obtain a realistic capital-output ratio.

Table 1 provides a summary of the model parameters. These parameters are standard for

quarterly parametrization. Most of the parameters are taken from Den Haan (2010). They are

used by Winberry (2016) to compare model outcomes with different computational methods.

We consider here the case where the preference for the public good is 0, such that Gt = τLt = 0.

As a consequence, we solve for the standard model with TFP shock and without taxes on capital.

5.2 Model outcome without public goods

We first study the model outcome without any provision of public good. In this case, G = τL = 0.

The model is then a standard Krusell and Smith (1998) type of model, where we do not solve
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for optimal policies. This model can be solved with standard techniques, which allows us to

compare our solution techniques to standard ones.

We start with computing the Bewley model, which corresponds to the previous model in

absence of aggregate shocks. This allows us to determine the steady-state equilibrium. In this

case, σz = 0, ft = fSS and lt = lSS . Using steady-state equilibrium results, we compute the

values for the ξi parameters that enable to exactly reproduce the distributions of wealth and of

consumption on the projected partition.

We use an implicit partition in the space of history using the steady-state wealth distribution.

We consider ten brackets of wealth. All constrained agents, independently of their type, belong

to the first bracket of wealth, while and the remaining 9 brackets of wealth have roughly the

same size.7 We then consider the distribution of any of the 14 different types of agents among

these brackets. We remind that each agent can be in one of 14 different individual states. As a

consequence, the partition has 140 = 7 × 2 × 10 different elements. We normalize the average

value of ξh to 1. We find that the standard deviation across the different sets of histories is

1.62%, which is small.

First, we report the steady state distribution of wealth in the model and in the data, using

the the Survey of Consumer Finance 2007, so as to avoid considering the temporary effects of

the 2008 financial crisis. The distribution labeled “Model” is both the distribution of the Bewley

model and the distribution of the projected model (by construction). The Gini coefficient of

wealth distribution generated by the model is high, and equals 0.72 and close to its empirical

counterpart value of 0.78. The next Table reports the distribution of wealth for the various

quintiles and for the top decile of the wealth distribution. The distribution of wealth is close to

its empirical counterpart. The model fails to reproduce the concentration of wealth at the top

of the distribution, what is a well-known feature of these models in the literature. Heteroge-

neous discount factors or heterogeneity in the return to human capital (entrepreneurship) helps

reproduce this concentration. We checked that the introduction of aggregate shocks does not

alter the shape of the average distribution of wealth. The average Gini coefficient in the model

with aggregate shocks and in the Bewley model are indeed very close (0.726 and 0.725).

Second, we simulate the model with aggregate shocks to compute second-order moments. For

the sake of comparison, we solve the model with three solution techniques. First, we simulate

the model using Krusell-Smith (K-S, henceforth) solution technique. More precisely, we use
7Steady state capital stock is 34.70 and the wealth thresholds to define the brackets of wealths are

(0.0100;0.2367; 0.3918; 1.7995; 5.2570; 12.3237; 24.0465; 50.0610; 93.6606; 814.5871). The last value is the
highest amount of wealth held by any agent in the model.
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Q1 Q2 Q3 Q4 Q5 D10 Gini

Model 0.1 0.9 5.3 18.3 75.5 69.9 0.72

SCF 2007 −0.2 1.2 4.6 11.9 82.5 53.7 0.78

Table 2: Distribution of wealth

Moments K-S Model(sim) Model(theory) Description

sd(Yt) 8.81 8.87 8.48 Standard deviation of output

sd(Ct) 5.43 5.57 5.33 Standard deviation of output

sd(Lt) 1.08 1.12 1.08 Standard deviation of output

sd(wt) 3.32 3.09 2.94 Standard deviation of output

sd(rt) 0.06 0.05 0.05 Standard deviation of output

corr(Yt, Ct) 0.92 0.96 0.95 Correlation output and consumption

corr(Yt, Lt) 0.99 0.99 0.99 Correlation output and labor

Table 3: Comparing second-order moments with different resolution techniques

the Krueger, Mitman, and Perri (2017) algorithm, based on the computational strategy of

(2010) and (2010). This algorithm uses projection methods to solve for the optimal policies and

simulation techniques to iterate on an aggregate law of motion in capital. Second, we solve for

the dynamics of the projected model using DYNARE and simulate the model for 3500 periods

to obtain second-order moments (a number of periods consistent with the simulation of the K-S

model). Third, we solve the model using the DYNARE solver to find theoretical second-order

moments. This last possibility is available because of the structure of our model, which has a

high but finite number of equations to simulate. The difference between the last two economies

allows us to identify sampling errors in our model. Results are reported in Table 3.

The moments generated by the three methods are very similar to each other. The simulated

moments are very close between the K-S economy and the simulation of the projected model.

The theoretical moments are a little bit different from the simulated moments, due to sampling

errors. The possibility to easily derive theoretical moments is an advantage of the simulation

technique we use.
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Appendix

A Different projection mechanisms

In addition to the basic mechanism described in Section 3.2, we also need to further “tools” to

proceed with the projection of the full model.

The first one is to aggregate transformation of variables, such as f (X) –where the function

f is assumed to be well-defined for any realization of X. If f is affine, the aggregation of the

transformation is simply the transformation of the aggregation. But in more general cases, we

need to account for this non-linearity. We will denote the aggregation of a transformation as

follows:
ˆ
a

∑
st∈h

f
(
Xt

(
a, st, zt

))
da = Sh,tξ

f
t f (Xh,t) ,

where: ξft =
´
a

∑
st∈h f

(
Xt
(
a, st, zt

))
da

f (Xh,t)
. (57)

This definition is obviously a straightforward rewriting of the aggregation equality. The quantity

ξft has the advantage to concentrate the non-linearity effect. Consistently with what we said

before, we have ξft = 1 whenever f is affine.

The second mechanism consists in aggregating the past choices of an agent with a given

history. More formally, let consider an history h ∈ Pt. The previous-period value of the variable

X are Xt−1
(
a, st−1, zt−1), where possible successors of et−1 are represented by history h. The
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aggregation of these previous-period values amounts to:
ˆ
a

∑
st∈h

Xt−1
(
a, st−1, zt−1

)
da =

∑
h̃∈Pt−1

Πt,h̃,h

ˆ
a

∑
st−1∈h̃

Xt−1
(
a, st−1, zt−1

)
da,

=
∑

h̃∈Pt−1

Πt,h̃,hSh̃,t−1Xh̃,t−1.

In other words, the aggregation of past values is straightforward: Aggregating over past indi-

vidual choices is equivalent to average past aggregate values.

The third mechanism that we need is to aggregate individual expectations. We again consider

a history h ∈ Pt and are interested in the aggregation of the expectation E
[
Xt+1

(
a0, s

t+1, zt+1) |st]
of next-period variable X, where st+1 is a successor of an element of h. Formally, we have:

ˆ
a

∑
st∈h

E
[
Xt+1

(
a, st+1, zt+1

)
|et
]
da = E

 ∑
h′∈Pt+1

Πt+1,h,h′ψ
X
t+1,h,h′Sh′,t+1Xh′,t+1

 , (58)

where:

ψXt+1,h,h′ =
∑
st∈h

∑
st+1∈h′,st+1�st

´
aXt+1

(
a, st+1, zt+1) da

Πt+1,h,h′Sh′,t+1Xh′,t+1
. (59)

The notation st+1 � st means that the t + 1-history st+1 is a successor of t-history st. The

term ψX reflects the fact that the left-hand side of (58) only involves the histories h′ that can

be attained from the history h, while the right-hand side involves all histories h′, no matter

whether they can be attained from h or not.

The last mechanism consists in aggregating the product of two variables X and Y . Again,

since the product is by essence non-linear, we need to introduce a corrective term. More formally:

1
Sh,t

ˆ
a

∑
st∈h

Xt

(
a, st, zt

)
Yt
(
a, st, zt

)
da = Xh,tYh,t + ηX,Yt ,

where: ηX,Yt (zt) = 1
Sh,t

ˆ
a

∑
st∈h

(
Xt

(
a, st, zt

)
−Xh,t

) (
Yt
(
a, st, zt

)
− Yh,t

)
da.

Again, introducing the quantity ηX,Yt will prove to be useful in the model aggregation.
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B Derivation of the History-Representation of the First-Order

conditions

max
(rt,wt,Gt,(ai

t,c
i
t))

t≥0

E0

 ∞∑
t=0

βt

∑
h∈P

Shηhu (ch) + v (Gt)

 , (60)

Gt +Kt−1rt + Ltwt ≤ Kα
t−1L

1−α
t − δKt−1 (61)

for all h ∈ P:

ch,t + ah,t ≤ (1 + rt) ãh,t + wt (h) (62)

ξhu
′
(
cbh,t

)
= β(1 + rt)Eh′

(
ξh′u

′ (ch′,t+1
))

+ νh (63)

ãh,t+1 =
∑
h′�g

Πg,h,ta
′
g,t

Sg,t
Sh,t+1

(64)

Kt =
∑
h∈P

Sh,tah,tΛt, Lt = (1− st)Lt−1 + ft (1− Lt) , (65)

cih,t, (aih,t + a) ≥ 0, (66)

The Lagrangian can be written as

J = E0

∞∑
t=0

βt
∑
h∈P

Sh,tηhu(ch,t)− E0

∞∑
t=0

βt
∑
h∈P

Sh,tλh,t (67)

×

ξhuc(ch,t)− νh,t − βEt
∑
h′∈P

Πh,h′,t+1ξh′uc(ch′,t+1)(1 + rt+1)


Define

Λh,t =
∑
h′∈P Sh′,t−1λh′,t−1Πh′,h,t

Sh,t
, (68)

Hence

L = E0

∞∑
t=0

βt
∑
h∈P

Sh,t (ηhu(ch,t) + ξhuc(ch,t) (Λh,t(1 + rt)− λh,t)) (69)

− E0

∞∑
t=0

µtβ
t
(
Kα
t−1L

1−α
t − δKt−1 −Gt −Kt−1rt − Ltwt

)
,

with

ch,t + ah,t ≤ (1 + rt) ãh,t + wt (h)

ãh,t+1 =
∑
h′�g

Πg,h,ta
′
g,t

Sg,t
Sh,t+1
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Derivative with respect to wt.

We obtain:

µtLt =
∑
h∈P

Sh,t
wh,t
wt

ψt,eN . (70)

Then the first-order conditions of the Ramsey program can be written as

µt = v′ (Gt)

ψt,h = βEt

(1 + rt+1)
∑
h′∈P

Πt,h,h′ψt+1,h′

 , for h 6= hcc

µtLt =
∑
h∈P

Sh,t
wh,t
wt

ψt,eN .

Note that wh,t

wt
= φ if the agents is unemployed and wh,t

wt
= 1− τt is the agent is employed.
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