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1 Introduction

The economic literature has recently begun to explore the role of safe assets

in the economy and the resulting implications for monetary policy and financial

stability. Safe assets, and in particular their scarcity, may be an essential factor

to understand the secular decline of real interest rates or why global macroeco-

nomic imbalances build up.1 However, what makes an asset safe? What does

exactly mean for safe assets to be scarce?

In most of this literature, securities are safe when they have a non-stochastic

payoff. However, many assets that we usually consider safe do not fall under

this definition. For example, government bonds can be considered default-free

in nominal terms but are still subject to inflation risk. For this reason, we adopt

a different approach: safety should be an equilibrium outcome.

In this paper we explicitly consider the role of information in the determina-

tion of the degree of safeness of the assets. Following Gorton (2017), an asset

is safe as long as there is no incentive to produce private information about its

quality.2 Indeed, information can generate volatility in the value of an asset,

making it not suitable for facilitating transactions. This implies that opacity

may be preferred to transparency.3

Regarding scarcity, instead, the shortage of safe assets matters if they have

a special role compared to other assets. Intuitively, we mean that some transac-

tions cannot be realized if agents do not have a sufficient amount of safe assets.

Only if their supply is sufficiently large the economy can reach the first-best

equilibrium, regardless of the availability of other assets. Otherwise, it is stuck

in a safety trap, as in Caballero and Farhi (2018).4

1Caballero, Farhi and Gourinchas (2017) discuss these issues and provide empirical evidence
of a shortage of safe assets. Gorton (2017) reviews the empirical literature and the implications
for financial stability.

2For alternative definitions or microfoundations of the assets safety see Caballero, Farhi and
Gourinchas (2017) and He, Krishnamurthy and Milbradt (2018).

3See for example: Hirshleifer (1971); Andolfatto (2010); Gorton and Ordoñez (2013, 2014);
Andolfatto, Berentsen and Waller (2014); Dang et al. (2017).

4A different notion of safety trap has been introduced by Benhima and Massenot (2013),
that refers to situations in which risk aversion and habit consumption can lead to an inefficient
over-accumulation of assets with the non-stochastic payoff. In this paper we always refer to the
definition of Caballero and Farhi (2018).
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Our first contribution is to show that a safety trap can arise naturally in a

general framework which microfounds when and why an asset is safe and why

people demand safe assets. When safety is an equilibrium outcome there is no

need to resort to nominal rigidities or extreme risk-aversion as in Caballero and

Farhi (2018). More generally, we show that being explicit about the determi-

nants of assets safety is fundamental to understand the impact and the policy

implications of safe assets scarcity.

We consider a general equilibrium environment à la Lagos and Wright (2005),

in which limited commitment and the absence of a record-keeping technology

make unsecured credit unfeasible. Assets are essential because they allow the re-

alization of profitable bilateral exchanges that, otherwise, would not be feasible.

As in Gorton and Ordoñez (2013, 2014), the critical friction is that assets can

be information-sensitive. It means that agents choose to produce costly private

information about the assets payoffs before the latter become public knowledge.

Information acquisition introduces uncertainty about the outcome of the trans-

actions, which will depend on the information that has been produced. Assets

are safe, instead, when they are information-insensitive, in the sense that there

is no endogenous production of information.

Information-insensitive assets can have different abilities in facilitating trans-

actions. Suppose there is a divisible asset with a stochastic payoff, called A. The

option to produce costly private information can generate a haircut on the as-

set’s value or an endogenous upper bound for the amount of assets that can be

transacted.5 Agents could be constrained in the use of the asset and, differently

from Gorton and Ordoñez (2013, 2014), the first best could not be attained,

regardless of how abundant the asset is and although in equilibrium the asset is

information-insensitive. Assets are definitively safer when agents can use them

in the desired amount and trade them at face value without the threat of infor-

mation acquisition. It is the scarcity of these safer assets – called B – that keeps

the output of the economy below its optimal level. Only increasing their supply

5Intuitively, the private value of information is increasing in the amount of asset transacted,
while the cost of information acquisition is fixed. Both the haircut and the endogenous upper
bound allow to keep the profit from information acquisition lower than its cost.
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can improve welfare, regardless of the supply of the other assets.

This result is equivalent to the safety trap described in Caballero and Farhi

(2018), although both the rational and the policy implications are different. For

example, suppose both assets A and B coexist. For a small initial provision of the

asset B, a costless marginal increase in its supply can affect only asset prices, and

surprisingly there could be no benefits concerning welfare. Agents do not change

their level of consumption but only the mix of assets used in their transactions.

They use more of the asset B and less of the assetA. Only when the initial supply

of the asset B is sufficiently large, a marginal increase in its provision is welfare

improving and leads to an expansion of trade and production in the economy.

Therefore, differently from the previous literature the benefits of increasing the

supply of the safest assets depend on their initial amount and the magnitude of

the expansion, even under the extreme assumption that changing their supply

is costless. We conclude that microfounding assets safety is fundamental to

understand the policy implications of safe assets scarcity.

Related literature. The effects of a shortage of safe assets have been exten-

sively analyzed by Caballero in a series of contributions since 2006 (for a review

see Caballero, Farhi and Gourinchas, 2017). Caballero and Farhi (2018) intro-

duced the notion of safety trap in a Keynesian model in which the demand for

safe assets determines the natural interest rate.6 Differently from them, our re-

sults do not depend on risk aversion but information frictions. Moreover, here

prices are flexible, while their results rely on nominal rigidities.

This paper endogenizes assets liquidity by allowing for the possibility to

produce private information about the quality of the assets, as in Dang, Gorton

and Hölmstrom (2015a,b). While their focus is the determination of the optimal

security that agents use to trade, here we are interested in the implications of the

coexistence of different assets as a medium of exchange. The most related works

are Gorton and Ordoñez (2013, 2014). Gorton and Ordoñez (2013) look to the

6The scarcity of safe assets pushes the natural (safe) interest rate down. When the economy
hits the zero lower bound the real rate cannot clear the market for safe assets. Since nominal
prices cannot adjust, this excess demand can only be absorbed if output goes down.
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coexistence of assets with a stochastic and non-stochastic payoff, respectively,

showing that the latter is redundant when the first is information-insensitive. In

our case, instead, the threat of information acquisition can make the asset with

a non-stochastic payoff essential also when the other securities are information-

insensitive and abundant. Differently from Gorton and Ordoñez (2013), we make

different assumptions about preferences and assets are divisible.

Andolfatto, Berentsen and Waller (2014) consider a framework similar to this

paper, but they are concerned about the desirability for the social planner to

disclose information about the quality of the assets. Also Andolfatto (2010) and

Andolfatto and Martin (2013) show that information may make an asset not

suitable as a mean of payment. In their case the disadvantage is that the asset

can have a low valuation in a situation in which there is a need for liquidity,

while here informational frictions affect the ability of the assets to be used as

medium of exchange.

Like the two previous contributions, this paper is related to the New Mon-

etarist literature (Lagos, Rocheteau and Wright, 2017; Nosal and Rocheteau,

2011). We endogenize assets liquidity in the Lagos and Wright (2005) frame-

work, but we abstract from fiat money and other nominal assets.7 Also in Lester,

Postlewaite and Wright (2011, 2012) agents can invest in a costly technology to

recognize the quality of assets. Differently from here, in their case this choice

must be made before meeting a counterpart and receiving an offer. Li, Rocheteau

and Weill (2012) extend their model to the case in which agents can produce

at a positive cost counterfeited assets, and this generates an endogenous upper

bound on the amount of assets that can be transferred in bilateral matches, sim-

ilarly to our model. Rocheteau (2011) studies a signaling game in which some

agents have superior information about the quality of an asset and make a take-

it-or-leave-it offer to their counterparts. Asymmetric information makes assets

partially illiquid, preventing to attain the first-best allocation. Here, a similar

result arises from just the threat of asymmetric information.

7The role of real assets in facilitating transactions has been already studied by Geromichalos,
Licari and Suarez-Lledo (2007) and Lagos (2010, 2011), although in their models the liquidity
properties of the assets are taken as given.
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In section 2 we present the structure of the model and we show when agents

produce information. In section 3 we discuss the equilibria of the model and

the implications of safe assets scarcity. Finally, in section 4 we draw the main

conclusions, and we illustrate the direction for future research.

2 The model

Time is discrete, starts at t = 0 and continues forever. Similarly to Lagos and

Wright (2005), each period is divided in two sub-periods. In the first sub-period

trades occur in a decentralized market (DM), while in the last sub-period trades

take place in a Walrasian centralized market (CM). There are two perishable

consumption goods, one in each sub-period. There is a continuum of infinitely-

lived agents divided into two types, both with measure 1. We call them buyers

and sellers, and they differ regarding when they produce and consume.

In each period the utility of a buyer is u(qt)−ht, where q is the consumption

of the DM good and h is the disutility of work during the second sub-period.

The utility function u(·) is twice continuously differentiable, with u(0) = 0,

u′(0) =∞, u′(∞) = 0, u′(·) > 0 and u′′(·) < 0. The utility of a seller is −qt + ct,

where the first term is the disutility to produce qt units of goods in the DM and

ct is the linear utility from consuming in the CM. All agents discount future

utility at a rate β ∈ (0, 1).8

CM DM CMt t+ 1

buyers meet with sellers

sellers produce goods

in exchange for assets

buyers consume goods

”old” assets produce dividends

”new” assets distributed to agents

sellers consume goods produced by buyers

portfolio choice

Figure 1: Timeline

During the day each buyer meets randomly with a seller and consumes the

good produced by the seller, while during the night buyers produce and sellers

8Thanks to these assumptions we can make clear that the specialness of safe assets does not
rely exclusively on risk aversion. See Gu, Mattesini and Wright (2016) for a discussion about
potential generalizations.
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consume. In this economy welfare is maximized by the following first-best allo-

cation. In the DM buyers consume an amount q∗ of goods produced by sellers,

where q∗ satisfies u′(q∗) = 1. In the CM h = c = q∗.

Unsecured debt would support the first-best allocation, but it is ruled out

by the absence of a record-keeping technology and the impossibility for agents

to make binding commitments (Lagos, Rocheteau and Wright, 2017). Assets

can facilitate trade, meaning that they can allow buyers to reach a level of

consumption otherwise unfeasible.

There are two one-period-lived divisible real assets, in positive net supply

A,B > 0. Both assets pay dividends in terms of units of the CM good once this

market opens. Then, there is a supply of A,B new units of both assets, that

agents can buy at a price ρa and ρb (also in terms of the CM good), respectively.9

Let us call the first asset A and the second one B. The two securities differ

because of their payoffs. Each unit of the asset A generates a stochastic dividend:

with probability πl its payoff is δl > 0, while with probability πh = 1 − πl

is δh > δl. We define the expected dividend as δ, and we assume there is

no serial correlation in the realization of the returns. The asset B has a non-

stochastic payoff, that we normalize to 1. The crucial assumption is that the

actual realization of the dividend of the asset A becomes public knowledge only

at the beginning of the CM.10

2.1 Markets

We start from the analysis of the CM. We will define the quantities of the

assets that an agent owns at the beginning of each sub-period using lowercase

letters: a for the asset A, b for the asset B. Notice that we ignore time subscripts

because we restrict the attention to stationary equilibria.

9We assume that buyers receive all the endowment of the new assets. Given the linearity of
preferences this is without loss of generality.

10It would be easy to introduce fiat money or long term assets in this framework, but this is
not essential for the purposes of this paper.
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Centralized Market. The value function of a buyer in the CM is:

W b(a, b) = max
h,a′,b′

−h+ βV b(a′, b′)

s.t. ρaa′ + ρbb′ = h+ δja+ b+ ρaA+ ρbB

where j ∈ {l, h}. The buyer chooses the amount of work to supply and the

portfolio of assets to bring in the next period, (a′, b′). He takes into account the

continuation utility in the DM, V b, the initial wealth, δja+b, and the endowment

of new assets. Notice that δj becomes public knowledge at the beginning of this

sub-period.

Substituting the budget constraint into the objective function, we get

W b(a, b) = δja+ b+ ρaA+ ρbB + max
a′,b′≥0

[
−ρaa′ − ρbb′ + βV b(a′, b′)

]
(1)

Since the value function is linear in the initial wealth and the stochastic div-

idends are i.i.d., the choice of asset holdings is independent of the state variables

and the realization of δj .

The problem of the seller is derived equivalently, and his value function W s is

linear in the initial wealth. As we will discuss in section 3, in equilibrium sellers

never bring assets in the next period, then we do not report their problem.

Decentralized market. In the DM each buyer is randomly matched with a

seller and can use claims on his assets holdings as a medium of exchange.11

Buyers and sellers know only the probability distributions of the payoff of asset

A. For the moment, agents do not receive any informative private signal. Buyers

make take-it-or-leave-it offers denoted by x ≡ (q, da, db), where da and db are the

quantities of the two assets that a buyer transfers to the seller in exchange for q

units of the good. Given the information set and the linearity of the CM value

functions, the surplus of the buyer is Sb (x) ≡ u(q)−δda−db, while for the seller

is Ss (x) ≡ −q + δda + db.12

11Lagos (2011) and Venkateswaran and Wright (2014) show that in a large class of models
it is irrelevant if an asset is used as a medium of exchange or as a collateral. We will discuss
this assumption at the end of the section.

12It is also useful to introduce the ex-post utility of buyers and sellers, defined as Sbj and Ssj ,
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Because of symmetric ignorance about the future realization of δj , asset A is

valued at its fair value δ, that is predictable. A buyer entering in the DM with

this asset incurs no risk related to the consumption of DM goods, as in the case

of a risk-free security.

Proposition 1 If δa+ b ≤ q∗, then q = δa+ b, da = a and db = b. Otherwise,

q = q∗, δda + db = q∗, while da and db are undetermined.

If the buyer owns a sufficient amount of assets he can afford to consume the

first-best quantity of goods. Otherwise, he deploys all his holdings of both assets

consuming a quantity δa+ b of goods. In both cases the buyers extracts all the

gains from trade. However, the main implication of Proposition 1 is that the

two assets are equivalent, in the sense that they support the same allocations.

If δa ≥ q∗, asset A supports the efficient allocation and asset B is redundant.

2.2 Information acquisition

We assume that sellers can produce private information about the payoff

of asset A by incurring a positive disutility cost θ. Sellers can learn the exact

realization of δj after they have received an offer from a buyer, and before to

decide to accept or reject.13 Buyers do not have access to this technology and

cannot observe if sellers acquired information.14 The game proceeds as follows:

Stage 1. The buyer makes a take-it-or-leave-it offer to the seller.

Stage 2. The seller decides to produce information or not.

Stage 3. The seller decides to accept or reject the offer. If there is a rejection,

the buyer cannot make a new offer.

Since the uninformed party moves first, this game has stagewise perfect in-

formation, so we look for pure strategy subgame perfect equilibria. Stage 2 is

with j ∈ {l, h}. Ex-post utility differs from ex-ante utility only because δ is replaced by δj .
13For example, this asset may be an asset-backed security and the seller can hire a financial

expert that has the ability to assess the underlying assets.
14Based on Rocheteau (2011) we do not expect buyers to have a gain from information

acquisition because they cannot take advantage of that. Sellers would understand that buyers
are informed. Then, buyers should play a signaling game and sellers would end up extracting
rents (see Rocheteau, 2011).
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the crucial step: the problem of the seller is to compare the expected gain from

acquiring the information with the cost θ. At stage 1, the buyer makes an offer

that do or do not provide to the seller the incentive to produce information.

The buyer compares the continuation utility of the strategy with no informa-

tion acquisition, V N , with the utility derived from an offer that gives the seller

the incentives to acquire information, V I . Let us define the indicator function

τ(a, b) ≡ 1V N (a,b)≥V I(a,b). The value function of a buyer in the DM is defined as:

V b(a, b) = τ(a, b)V N (a, b) + [1− τ(a, b)]V I(a, b) (2)

Before to move to the derivation of V N and V I , we briefly discuss the choice

of the trading arrangement. We assume that assets are used as a medium of

exchange because it can be shown that the incentives to produce private infor-

mation would be the same with collateralized debt. Moreover, this assumption

allows us to isolate the implications of endogenous private information in a mi-

crofounded model with minimal and, in particular, well-accepted assumptions

about the environment (limited commitment and no record-keeping). Collater-

alized debt, instead, requires the specification a richer environment whose details

can have strong implications for the final results.15

2.2.1 Strategy with no information acquisition

We first consider the strategy in which the buyer avoids the production of

private information.

Suppose that the buyer makes an offer x. If the seller does not produce in-

formation his expected utility is Ss (x). An informed seller, instead, accepts to

trade only if observes the payoff δh – in any equilibrium q ≥ db + δld
a – and his

expected utility is πhS
s
h (x). As a consequence, the seller will not produce infor-

mation if the expected profit from acquiring information, −πlSs
l (x), is smaller

than the cost of information acquisition, θ. That is πl
(
q − δlda − db

)
≤ θ.

15We claim that our results can be retrieved with collateralized debt, but not in any model
in which assets are used as collateral. We address this discussion in a companion paper.

10



Therefore, the problem of the buyer can be defined as follows:

V N (a, b) = max
q,da≤a,db≤b

Sb
(
q, da, db

)
+ EW b(a, b)

s.t. Ss
(
q, da, db

)
≥ 0 (3)

−πlSs
l

(
q, da, db

)
≤ θ (4)

The buyer maximizes his surplus, keeping into account the following con-

straints. First, da ≤ a and db ≤ b. Second, the seller gets a non-negative surplus

(equation 3), and he has no incentive to produce private information (equa-

tion 4). A main implication of (4) is that sellers are more inclined to produce

information as da increases, because the cost of information per unit of asset

decreases. In particular, there exists a threshold value ā ≡ θ [πl(δ − δl)]−1 such

that if da < ā the incentive constraint (4) is always slack. This threshold depends

positively on the cost of information acquisition, θ, negatively on a proxy of the

dispersion of the stochastic dividend, δ− δl, and the probability of realization of

the bad state, πl.

We define q̃ as the solution to u′ (q̃) = δ/δl, ã(b) ≡ max {(q̃ − b− θ/πl) /δl, ā},

b̃ ≡ max {q̃ − δā, 0} and b̄(a) ≡ q∗ − δmin {a, ā}. The following proposition

summarizes the solution of the problem.

Proposition 2 If a ≤ ā or b ≥ b̃, then q = min {q∗, δda + b}, with da =

min{a, ā}; when q = q∗ the amount of db and da are undetermined (but da ≤ ā).

If a > ā and b ∈ [0, b̃), whenever b̃ > 0, then q = min {q̃, δla+ b+ θ/πl}, with

da = min {a, ã(b)}.

We start considering the case in which b = 0 (Figure 2a). If a < ā the

participation constraint of the seller (3) is binding, while (4) is slack. The buyer

consumes an amount of goods q = min {q∗, δa} and extracts all the surplus from

this transaction. If ā is sufficiently large, ā ≥ q∗/δ, this is the only solution for

all a and Proposition 1 applies. The most interesting case is when ā < q∗/δ and

a ≥ ā. Now (4) is binding, and the problem has two possible solutions.

First, if q̃ > δā the constraint (3) is slack and buyers and sellers split the
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0

S(q), q

aā ã(0) q∗/δ

q = δa

q = δla+ θ/πl

u (δld
a + θ/πl)− δda

u (δda)− δda

(a)

b

a

ā

ã(0)

b̃ b̄(ā) b̄(0)

ã(b)

b̄(a)

(b)

Figure 2: Optimal offer with no information acquisition.

gains from trade. Buyers give away an amount δda of initial wealth in the CM

in exchange for δld
a + θ/πl < δda units of consumption goods in the DM. The

buyer must provide to the seller an informational rent to avoid the production

of private information. Since this rent is increasing in da, a trade-off arises, and

consumption of DM goods is at most q̃ < q∗. At q̃ the marginal utility from

using the asset to buy goods in the DM is equal to the marginal utility from

using the asset in the CM, u′ (q̃) δl = δ.

Second, if q̃ ≤ δā also (3) is binding. Buyers choose da = ā and q = δā, also

when a > ā. They keep all the gains from trade, but they cannot get a greater

consumption.

We now consider the general case, in which b > 0 and δā < q̃ < q∗ (Figure

2b). When the holding of asset A is sufficiently small, a ≤ ā, buyers extract

all the surplus, and consumption is q = δa + b. Otherwise, when a > ā we can

establish a pecking order in the use of the two assets. Buyers first deploy all their

holdings of the asset B, then use the asset A. If b ≥ b̃ buyers keep all the gains

from trade, but the threat of asymmetric information gives rise to an endogenous

upper bound: da = ā < a. Consumption is δā + b. When b < b̃, instead, (3) is

slack and the consumption of buyers is q = min {q̃, δla+ b+ θ/πl}. Notice that

asset B is always valued at face value. Therefore, buyers deploy their holdings

of this asset to minimize the informational rent of the sellers, that is increasing

in da.
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2.2.2 Strategy with information acquisition

Since avoiding information acquisition may be penalizing in terms of forgone

consumption, a buyer can prefer to let the seller produce information.

In this equilibrium of the game the seller discovers the payoff of asset A.

Therefore, it makes sense to consider a strategy in which the buyer proposes a

menu of offers with the following properties. First, the seller has the incentive

to produce private information. Second, the seller chooses one of the menu

offers. Third, the seller reveals his private information about asset A through its

choice. Since asset A has two possible payoffs, δl (low state) and δh (high state),

we consider a menu including two offers. We denote this menu by {xl,xh}, where

xj =
{
qj , d

a
j , d

b
j

}
and j ∈ {l, h}.

The menu is designed in order to maximize the expected continuation util-

ity of the buyer, πlS
b
l (xl) + πhS

b
h (xh) + EW b(a, b), subject to a set of par-

ticipation and incentive constraints; the related value function is denoted by

V I .16 The seller produces information if his expected utility is nonnegative,

πlS
s
l (xl) + πhS

s
h (xh) ≥ θ. Besides, the production of information is not ob-

servable. Therefore, producing information must be not dominated by a trivial

strategy in which the seller saves the cost of information acquisition and always

choose one of the two offers, xl or xh, without being informed. This turns

out to be a generalization of the standard truth-telling conditions in asym-

metric information problems, and is represented by the following constraints:

Ss
h (xl) ≤ Ss

h (xh) − θ/πh and Ss
l (xh) ≤ Ss

l (xl) − θ/πl. These constraints also

guarantee that a seller observing the payoff δl (δh) chooses the offer xl (xh).

Finally, the seller must always get a non-negative surplus, namely Ss
j (xj) ≥ 0

for j ∈ {l, h}.17

Let us define q̂l as the unique solution to [u′ (q̂l)− 1]πlδl = δ − δl. The

following proposition shows how the menu is composed:

16The full statement of the problem is reported in Appendix A.
17A further possibility is that the buyer does not propose a menu but a single offer x′ that

violates (4). In this case the seller would accept only if the payoff of asset A is δh. This
possibility is encompassed in our formulation, e.g. xh = x′ and xl = {0, 0, 0}.
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Proposition 3 Suppose b ∈ [0, q∗). The menu {xl,xh} is implementable if and

only if a ≥ ā. In the optimal menu dbl = b, ql = δld
a
l + b and

dah − dal ≥ ā (5)

(δh − δl)dal +
θ

πh
= −qh + δhd

a
h + dbh (6)

For each b there exists a threshold â(b) (weakly decreasing in b) such that if

a ≥ â(b) we have: qh = q∗, dal = max{0, (q̂l−b)/δl} and (6) pins down δhd
a
h+dbh.

If a < â(b) we have: dbh = b, dah = a and (qh, d
a
l ) are jointly determined by (5),

(6) and

u′ (δld
a + b)− 1 =

πh
πl

δh − δl
δl

u′ (qh) + ζ (7)

where ζ is the lagrangian multiplier associated to (5).

This strategy is implementable if and only if a ≥ ā because the menu of

offers must satisfy (5). Intuitively, the seller has the incentive to produce infor-

mation and reveal the actual payoff of the asset A only if the terms of trade are

sufficiently different between xl and xh.18

In the low state the seller extracts no rents, as ql = δld
a
l + b. Instead, in

the high state the seller gets a surplus equal to θ/πh + (δh − δl)dal . The first

component is the compensation for the cost of information acquisition. The last

component provides the incentive to truthfully reveal if δh realized. If the seller

does not acquire information and always chooses xl, he gets a null payoff with

probability πl and a strictly positive surplus with probability πh. For the seller

the expected payoff of this strategy, which is increasing in dal , should not be

greater than the payoff of the strategy in which he incurs the cost to produce

information. Then, the buyer must give an informational rent to the seller

(increasing in dal ) in the high state and a null surplus in the low state. Since

this is costly, dal is endogenously bounded by (5) and when dal > 0 the maximal

amount of consumption in the low state is q̂l < q̃.

18It should be clear from the previous section that this is not an issue. When a < ā the
constraint associated with the threat of information acquisition is not binding. Therefore, the
seller will never let the seller produce private information.
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Asset B relaxes the incentive constraints of the seller and allows the buyer

to extract a larger share of the gains from trade. Then, the buyer deploys all his

holdings b. By increasing dbl , the buyer can reduce dal and the informational rent

in the high state. When b ≥ q̂l the buyer must compensate the seller only for

the cost to produce information, and increasing ql does not affect the incentive

constraints.

The optimal quantity of good demanded by the buyer in the high state can

be equal to the first-best q∗, provided that the buyer hold at least â(b) units of

the asset A, given a holding b of the other security. The informational rent that

the buyer provides to the seller in the high state is not correlated with dah but

depends on the sunk cost θ/πl and dal .19

3 Portfolio choice and equilibrium

Once we have derived V N and V I , we can characterize V b according to

(2). An obvious result is that buyers avoid asymmetric information when a is

sufficiently small or b is relatively large.

Lemma 1 If a ≤ ā or b ≥ b̄(ā), then V b(a, b) = V N (a, b).

The first result is trivial, because when a ≤ ā the buyer can extract the

maximum surplus from trading with the seller without facing consumption risk.

The second conclusion derives from the strict concavity of u(·) and θ > 0.

The trade-off between the two strategies is the following. With no informa-

tion acquisition the buyer does not face consumption risk. He is constrained in

the use of asset A and consumption can be low. With information acquisition

there is no such a constraint. Eventually the buyer can consume the optimal

level of goods, q∗, but he faces consumption risk. In general, V N is greater or

smaller than V I depending on the characteristics of the assets, the cost to ac-

quire information and the initial asset holdings (see for example Figure 4 and

19For a sufficiently large a constraint (5) is slack, otherwise also in this case the buyer would
internalize the negative effect of increasing dah via the informational rent (δh − δl)dal .
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footnote 23). The buyer may prefer information acquisition when his holding of

asset A is large, θ is small and δh/δl is high.

Once V b has been defined, we have to discuss the portfolio choice in the CM.

As shown in (1), the buyer has to choose the optimal amount of assets to bring

in the next DM, given V b and asset prices. Notice that we restrict our attention

only to the problem of the buyers because sellers have no need to bring assets in

the DM.20 Finally, the clearing of the market for assets requires A = Ad(ρa) and

B = Bd(ρb), where A and B are the fixed supply of the two assets, respectively,

and Ad(ρa) and Bd(ρb) are the relative aggregate demand correspondences:

Ad(ρa) =

∫
[0,1]

a′(i)di, Bd(ρb) =

∫
[0,1]

b′(i)di (8)

where a′(i) and b′(i) are the quantities chosen by the ith buyer. At this point we

can state the definition of equilibrium.

Definition 1 (Equilibrium) A stationary equilibrium is a list of value func-

tions
{
W b, V b, V N , V I

}
, a list of portfolio {a′(i), b′(i)}, a vector of prices (ρa, ρb),

a decision rule in the DM τ(a′, b′) and a list {x,xl,xh} such that: {a′(i), b′(i)}

solves (1) for each buyer i given V b; τ(a′, b′) returns the strategy chosen in the

DM given V N and V I ; V b is determined according to (2); x maximizes V N and

{xl,xh} maximizes V I ; (ρa, ρb) are such that Ad(ρb) = A and Bd(ρb) = B.

The prices of the two assets are greater or equal to their expected discounted

dividend in the next CM, that is ρa ≥ βδ and ρb ≥ β. The term of the right-hand

side is the fundamental value of each asset and reflects the role of the asset as a

store of value. The price of an asset departs from its fundamental value when it

facilitates trade in the DM, namely when an additional unit of this asset allows

a buyer to get a greater utility when trading in the DM. In this case, following

Lagos, Rocheteau and Wright (2017), we will say that the asset bears a liquidity

premium. Hereafter, we find more useful to focus directly on a measure of this

liquidity premium: Ra = ρa/(βδ)− 1 and Rb = ρb/β − 1.

20Since sellers care only about the payoff of the assets in the next CM, they do not demand
assets if ρa > βδ and ρb > β, while they are indifferent if ρa = βδ and ρb = β. Then, we can
assume that they do not demand any asset.
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3.1 Equilibrium without information acquisition

First, we consider the case in which V b = V N for all a, b ∈ <+.21 Both

assets are information-insensitive and safe, because in equilibrium there is never

uncertainty about their valuations in the DM. Buyers know ex-ante the quantity

of consumption goods they can get.

The portfolio optimization problem in (1) is a concave program. All buy-

ers enter in the DM with the same portfolio, and we can restrict attention to

symmetric equilibria.

Both assets are information-insensitive but they may not be equivalent. In-

deed, the threat of information acquisition may dampen the liquidity of asset A.

An asset can be freely used as a medium of exchange only if producing private

information is not possible or not convenient – because in equilibrium the profit

from information acquisition is always strictly smaller than its cost.

Proposition 4 Suppose A,B > 0, q̃ > δā and V b = V N for all a, b ∈ <+. If

A 6= ā there always exists a unique symmetric equilibrium. For any A, Ra =

Rb = 0 and q = q∗ if and only if B ≥ b̄(A). Suppose B < b̄(A). If A < ā then

Rb = Ra > 0. If A > ā then Rb > Ra ≥ 0, with Ra = 0 if A ≥ ã(B).

According to Proposition 4, the first-best allocation can be attained provided

there be a sufficient amount of securities, in particular of the asset B. In this

equilibrium (A,B) must be such that B + δmin {A, ā} ≥ q∗. Since assets are

abundant, buyers consume the first-best level of DM goods. Additional units of

both assets are valued only for their role as a store of value and Rb = Ra = 0.

When the total amount of assets is scarce and A < ā, buyers cannot afford to

consume the optimal quantity of goods. In this situation a marginal increase in

the supply of any of the two assets allows the buyer to expand his consumption

and surplus in the DM. Then, a buyer is willing to pay for both assets a price

greater than the fundamental value, and asset prices incorporate a liquidity

premium: Rb = Ra = u′ (B + δA)− 1.

21In the Appendix C we derive sufficient conditions for δh/δl and θ that guarantee this result.
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Figure 3: Equilibrium with information-insensitive assets

If ā > q∗/δ, this would be the full characterization of all the possible equilibria

(Figure 3a). The constraint (4) would be always slack, and the two assets would

be equivalent, because they could support the same set of allocations. IfA > q∗/δ

the first best would be attained, independently of the level of B. However, under

the hypothesis of Proposition 4 this is not the case.

When B < b̃ and ā < A < ã(B) buyers consume an amount of goods q < q̃.

Then, an additional unit of both types of assets would allow an expansion of

consumption. The prices of both assets are greater than their fundamental value,

but Rb > Ra because asset A has a lower degree of liquidity:

Rb = u (δlA+B + θ/πl)− 1 > u (δlA+B + θ/πl)
δl
δ
− 1 = Ra

When A ≥ ã(B) or B ≥ b̃, instead, there exists an endogenous upper bound

on the amount of the asset A that buyers may want to transfer to sellers (yellow

and green area in Figure 3b). An additional unit of this asset does not allow

the buyer to increase his utility in the DM, then Ra = 0. The price of the

other security, instead, includes a positive liquidity premium. In this equilibrium

q < q∗, and only a sufficiently large increase in B can bring the economy to the

first best. The two assets are not equivalent, then they have different degrees of

safeness. The asset A is safe, but only because agents discipline themselves in

its use. The other asset, at the opposite, can be freely used.
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Proposition 5 Suppose B < b̄(A) and A > ã(B). A marginal increase in B is

welfare improving if and only if B ≥ b̃.

Depending on the initial amount of the asset B, a marginal increase in its

supply does not imply that the aggregate consumption (total surplus) in the

DM rises. In particular, when B is small (yellow area in Figure 3b) total welfare

does not change. From Proposition 2, in this region the total surplus into the

DM is u (q̃) − q̃. Following a marginal increase in the holdings of asset B, the

buyer keeps the amount of consumption unchanged to q̃, but replaces asset A

with asset B, increasing its share of the gains from trade. This redistribution

happens up to b̃, when the buyer takes all the surplus. Only from b̃ onward

a buyer with a larger holding of the asset B does expand his consumption to

increase his surplus from the trade (green area in Figure 3b). In a symmetric

equilibrium this behavior holds in aggregate. Then, a marginal increase of B

does not necessarily cause an increase of the aggregate welfare, but it may only

involve a redistribution of surplus from sellers to buyers. We have positive effects

only if the asset B is already relatively abundant.22

It should be noted that the price of the asset B is always affected by a

variation in B, provided that B < b̄(A). In equilibrium, the price of the asset is

related to the surplus of the buyer. Then, as long as q < q∗ an expansion of B

leads to a reduction of ρb, although q may not change.

3.2 Equilibrium with information acquisition

We now consider the case in which for some combination of A and B in equi-

librium buyers let sellers produce private information. We restrict the discussion

to the identification and the analysis of safety traps equilibria.

The identification of which asset is safe is trivial. When the asset A is

information-sensitive, buyers face uncertainty about its valuation and then about

consumption. The information-insensitive asset is special because it always guar-

22In Appendix B we show that this irrelevance with respect to consumption can be retrieved
in a more general setting in which sellers have a strictly convex cost of production in the DM
and a strictly concave utility function in the CM.
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Figure 4: Optimal strategy in the DM with information acquisition

antees the same level of consumption. When b < q̃l and a ≥ â(b) the buyer can

consume q∗ in the high state and q̂l in the low state; his expected payoff is:

πl [u(q̂l)− q̂l] + πh

[
u(q∗)− q∗ − θ

πh
− (δh − δl) dal

]
(9)

Therefore, an additional unit of the asset A will be valued only for its expected

dividend in the CM. At the opposite, an additional unit of the safe asset allows

the buyer to reduce the informational rent in the high state (when b < q̃l) or

to increase the consumption in the low state (when b ≥ q̃l). Then, buyers are

willing to pay for the safe security a price greater than its fundamental value.

The main question is how a change in the supply of asset B can affect the

equilibrium. The following proposition reports the key result of this section.

Proposition 6 Suppose A ≥ max {ã(0), â(0)}. There exists a B′ < b̄ (ā) such

that for B > B′ the equilibrium is symmetric and V N (A,B) ≥ V I(A,B).

Lemma 1 implies the trivial result that for B ≥ b̄ (ā) in equilibrium all assets

are information-insensitive and the first best is reached. This is because the

asset B is so abundant that (4) is always slack and buyers reach the optimal

level of consumption. Proposition 6, instead, implies that in a safety trap all

assets become information-insensitive provided that the provision of the asset

B becomes sufficiently large, although lower than b̄ (ā) (see Figure 4).23 The

23An output qualitative similar to Figure 4 can be produced by assuming u(q) = q1−η−1
1−η ,
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economy would still be in a safety trap, but now both assets are safe and buyers

make the same portfolio choice. Therefore, the safety of an asset can depend not

only on its intrinsic characteristics but also on the provision of other types of

safe assets. Intuitively, avoiding information acquisition may not be a preferred

strategy when the buyer has a large holding of asset A. To avoid information

acquisition the buyer should limit the use of asset A. At the opposite, with

information acquisition the buyer can potentially (with probability πh) deploy

his holding of the asset A enjoying a large consumption. A greater holding of

the asset B reduces the relative benefits of information acquisition.24

There are two final remarks. First, marginally increasing the supply of the

asset B may have no effects on welfare. Let us suppose that B < q̂l and we

are are in a symmetric equilibrium in which in all DM meetings sellers acquire

information. Then, buyers take advantage of a marginal increase in the supply

of the safe security by reducing the informational rent (δh − δl)dal , while both ql

and qh do not change.

Second, since V b is not necessarily convex a symmetric equilibria may fail to

exist. In this case we should look for asymmetric equilibria, in which a different

fractions of buyers choose different portfolio of assets and, therefore, different

strategies in the next DM.

4 Conclusions

We discussed the role of safe assets in a model in which their status is en-

dogenously determined. Following Gorton (2017), we introduced endogenous

private information in a standard model in which unsecured credit is unfeasible,

and agents can use different assets to trade. We showed that assets with dif-

ferent degrees of safeness can coexist. Securities for which the threat of private

information is never relevant are a preferred medium of exchange. When they

are scarce, agents choose a suboptimal level of consumption, regardless of their

with η = 0.5, θ = 0.01, πl = 0.5, δl = 0.75 and δh = 1.25. If we set δl = 0.8 and δh = 1.2,
instead, we would get V b = V N for all possible values of a and b.

24When b ≥ q̃l a greater holding of the asset B is beneficial only in the low state. It allows
an increase of ql, while qh is capped at q∗.
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holdings of other assets.

The benefits of an increase in the provision of the safest assets would depend

on their initial supply and the magnitude of the expansion. There are positive

welfare effects only when they are already sufficiently abundant, or when the

magnitude of the increase is significant. Otherwise welfare effects are null. This

result is significant because so far the main concerns have been about the fea-

sibility or the implicit costs associated with an increase in the supply of safest

assets. Consider, for example, the case of government bonds. A vast expansion

of their supply can jeopardize their status of safe assets (Caballero and Farhi,

2018), and its benefits must be traded off with the distortions introduced by

the taxes that are levied to support the new debt (Gorton and Ordoñez, 2013).

Here, instead, it could be the case that there are no benefits at all, although we

consider the extreme case in which there are no costs associated with this policy.

Our results have potential implications also for monetary policy. Caballero

and Farhi (2018) argue that the effectiveness of some unconventional monetary

policies, such as large-scale open market operations, may be dampened by the

adverse effect of a reduction in the supply of safe assets. However, according to

our results this should also depends on their initial supply. The analysis of the

implications of this type of unconventional monetary policies is left for future

research.
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Gorton, Gary, and Guillermo Ordoñez. 2014. “Collateral Crises.” American

Economic Review, 104(2): 343–78.

Gottardi, Piero, Vincent Maurin, and Cyril Monnet. 2017. “A theory of

repurchase agreements, collateral re-use, and repo intermediation.” European

University Institute Economics Working Papers ECO2017/03.

Gu, Chao, Fabrizio Mattesini, and Randall Wright. 2016. “Money and

Credit Redux.” Econometrica, 84(1): 1–32.

He, Zhiguo, Arvind Krishnamurthy, and Konstantin Milbradt. 2016.

“What Makes US Government Bonds Safe Assets?” American Economic Re-

view, 106(5): 519–23.

24



He, Zhiguo, Arvind Krishnamurthy, and Konstantin Milbradt. 2018.

“A Model of Safe Asset Determination.” American Economic Review. Forth-

coming.

Hirshleifer, Jack. 1971. “The Private and Social Value of Information and the

Reward to Inventive Activity.” American Economic Review, 61(4): 561–74.

Holmström, Bengt. 2015. “Understanding the role of debt in the financial

system.” Bank for International Settlements Working Papers 479.

Krishnamurthy, Arvind, and Annette Vissing-Jorgensen. 2012. “The

Aggregate Demand for Treasury Debt.” Journal of Political Economy,

120(2): 233–267.

Krishnamurthy, Arvind, and Annette Vissing-Jorgensen. 2015. “The

impact of Treasury supply on financial sector lending and stability.” Journal

of Financial Economics, 118(3): 571 – 600.

Lagos, Ricardo. 2010. “Asset prices and liquidity in an exchange economy.”

Journal of Monetary Economics, 57(8): 913–930.

Lagos, Ricardo. 2011. “Asset Prices, Liquidity, and Monetary Policy in an

Exchange Economy.” Journal of Money, Credit and Banking, 43: 521–552.

Lagos, Ricardo, and Randall Wright. 2005. “A Unified Framework for Mon-

etary Theory and Policy Analysis.” Journal of Political Economy, 113(3): 463–

484.

Lagos, Ricardo, Guillaume Rocheteau, and Randall Wright. 2017. “Liq-

uidity: A New Monetarist Perspective.” Journal of Economic Literature,

55(2): 371–440.

Lester, Benjamin, Andrew Postlewaite, and Randall Wright. 2011. “In-

formation and Liquidity.” Journal of Money, Credit and Banking, 43: 355–377.

25



Lester, Benjamin, Andrew Postlewaite, and Randall Wright. 2012. “In-

formation, Liquidity, Asset Prices, and Monetary Policy.” The Review of Eco-

nomic Studies, 79(3).

Li, Yiting, Guillaume Rocheteau, and Pierre-Olivier Weill. 2012. “Liq-

uidity and the Threat of Fraudulent Assets.” Journal of Political Economy,

120(5).

Monnet, Cyril, and Erwan Quintin. 2017. “Rational Opacity.” The Review

of Financial Studies, 30(12): 4317–4348.

Nosal, Ed, and Guillaume Rocheteau. 2011. Money, Payments, and Liq-

uidity. The MIT Press.

Rocheteau, Guillaume. 2011. “Payments and liquidity under adverse selec-

tion.” Journal of Monetary Economics, 58(3): 191–205.

Rocheteau, Guillaume, and Randall Wright. 2005. “Money in Search Equi-

librium, in Competitive Equilibrium, and in Competitive Search Equilibrium.”

Econometrica, 73(1).

Venkateswaran, Venky, and Randall Wright. 2014. “Pledgability and Liq-

uidity: A New Monetarist Model of Financial and Macroeconomic Activity.”

NBER Macroeconomics Annual, 28(1): 227–270.

Williamson, Stephen D., and Randall Wright. 2011. “New Monetarist

Economics: Models.” Handbook of Monetary Economics, 3: 25–96.

26



A Proofs

Proof of Proposition 1. The optimization problem of the buyer is the following:

max
q,da,db

u(q)− δda − db

s.t. − q + δda + db ≥ 0 (10)

0 ≤ da ≤ a, 0 ≤ db ≤ b

The Lagrangian can be written as follows:

L = u(q)− δda − db + λ1(−q + δda + db) + λ2d
a + λ3(a− da) + λ4d

b + λ5(b− db)

and the first order conditions are

[q] : u′(q)− λ1 = 0 (11)

[da] : −δ + λ1δ + λ2 − λ3 = 0 (12)

[db] : −1 + λ1 + λ4 − λ5 = 0 (13)

From (11) we have λ1 > 0 and (10) is binding, otherwise q = ∞. We can rewrite (12)

and (13) as λ1 = 1 + (λ3 − λ2)/δ and λ1 = 1 + λ5 − λ4, where it is clear that λ3 > 0

implies λ5 > 0. λ1 ≥ 1, otherwise q > q∗ and λ2, λ4 > 0. But λ2, λ4 > 0 imply q = 0,

then λ1 ≥ 1. If λ3 = 0, then λ5 = 0, λ1 = 1 and q = q∗ from (11). To have this

solution we need δa + b > q∗. Notice that da and db are undetermined but (10) pins

down δda + db = q∗. If If λ3 > 0, then λ5 > 0, λ1 > 1 and (10) pins down q = δa + b,

while da = a and db = b.

Proof of Proposition 2. The optimization problem of the buyer is the following:

max
q,da,db

u(q)− δda − db

s.t. − q + δda + db ≥ 0 (14)

πl(q − δlda − db) ≤ θ (15)

0 ≤ da ≤ a, 0 ≤ db ≤ b

The Lagrangian can be written as follows:

L = u(q)− δda − db + λ1(−q + δda + db) + λ2

(
−q + δld

a + db +
θ

πl

)
+
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λ3d
a + λ4(a− da) + λ5d

b + λ6(b− db)

and the first order conditions are

[q] : u′(q)− λ1 − λ2 = 0 (16)

[da] : −δ + λ1δ + λ2δl + λ3 − λ4 = 0 (17)

[db] : −1 + λ1 + λ2 + λ5 − λ6 = 0 (18)

From (16) at least one constraint among (14) and (15) has to be binding, otherwise

λ1 = λ2 = 0 and q =∞.

Case I: λ1 > 0, λ2 = 0. We can rewrite (17) and (18) as λ1 = 1 + (λ4 − λ3)/δ and

λ1 = 1 + λ6 − λ5, where it is clear that λ4 > 0 implies λ6 > 0. λ1 ≥ 1 by using the

same argument of the proof of Proposition 1. The optimal quantity of good that the

buyer want to consume is q∗, the solution to u′(q) = 1. If δa + b > q∗ then q = q∗ but

da and db are undetermined. Otherwise, da = a, db = b and q = δa + b. Since this

solution exists if (15) is slack, we have to verify that this is true. Substituting (14) in

(15) and rearranging we get πl(δ − δl)da ≤ θ. Therefore, this solution exists as long as

a ≤ ā ≡ θ [πl(δ − δl)]−1
or b ≥ b̄(a) ≡ q∗ − δmin {a, ā}. In the latter case da ≤ ā.

Case II : λ1 = 0, λ2 > 0. If 0 < db < b, then λ5 = λ6 = 0 and from (18) λ2 = 1. Since

δ/δl > 1, from (17) necessarily λ3 > 0, that implies da = 0. But if da = 0, then (15)

cannot be binding. Then db = b. Having db = b and da > 0, substituting (17) in (16)

we get u′(q) = δ/δl +λ4 and q ≤ q̃, where the latter is the solution to u′(q) = δ/δl. The

existence of this solution requires a > ā and b < b̃ ≡ q̃ − δā, otherwise (14) is binding.

Notice that for b < b̃ and a = ā we have u (δā+ b)− δā− b = u (δlā+ b+ θ/πl)− δā− b.

Case III : λ1 > 0, λ2 > 0. Both (14) and (15) are binding. Substituting (14) in (15)

we pin down da = ā and the whole problem can be rewritten as

max
db≤b

u(δā+ db)− δā− db

When δā+ b ≤ q∗ we have db = b and q = δā+ b. The existence of this solution requires

b̃ ≤ b < b̄(a) and a > ā.

Proof of Proposition 3. Let b ∈ [0, q∗) and define Ssi (xj) = −qj + δid
a
j + dbj , with

i, j ∈ {l, h}. The problem is the following

max
ql,qh,dal ,d

b
l ,d

a
h,d

b
h

πl
[
u (ql)− δldal − dbl

]
+ πh

[
u (qh)− δhdah − dbh

]
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s.t. πlS
s
l (xl) + πhS

s
h(xh) ≥ θ (19)

Ssl (xl) ≥ 0 (20)

Ssh(xh) ≥ 0 (21)

πlS
s
l (xl) + πhS

s
h(xl) ≤ πlSsl (xl) + πhS

s
h(xh)− θ (22)

πlS
s
l (xh) + πhS

s
h(xh) ≤ πlSsl (xl) + πhS

s
h(xh)− θ (23)

Ssl (xl) ≥ Ssl (xh) (24)

Ssh(xh) ≥ Ssh(xl) (25)

ql, qh ≥ 0 0 ≤ dal ≤ a 0 ≤ dbl ≤ b 0 ≤ dah ≤ a 0 ≤ dbh ≤ b

Equations (22) and (23) imply (24) and (25), respectively. Therefore the latter can be

ignored. Moreover, given (20) equation (22) implies (21). Consider now equation (20).

Since the buyer maximizes his surplus, for any given dal and dbl it is possible to increase

ql up to (20) be binding and (22) and (23) are still satisfied. To see this, let us rewrite

the two constraints as

Ssl (xl) + (δh − δl)dal ≤ Ssh(xh)− θ

πh

Ssh(xh)− (δh − δl)dah ≤ Ssl (xl)−
θ

πl

Then

Ssl (xl) + (δh − δl)dal ≤ Ssh(xh)− θ

πh
≤ Ssh(xh) ≤ Ssl (xl) + (δh − δl)dah −

θ

πl

that implies Ssl (xl) can be set to 0, as only the difference between dah and dal matters.

Then, (20) is binding. Finally, given (20) is binding and dal ≥ 0, (22) implies (19), that

becomes redundant. The problem can be simplified as follows:

max
qh,dal ,d

b
l ,d

a
h,d

b
h

πl
[
u
(
δld

a
l + dbl

)
− δldal − dbl

]
+ πh

[
u (qh)− δhdah − dbh

]
s.t. πh(δh − δl)dal ≤ πh

(
−qh + δhd

a
h + dbh

)
− θ (26)

πl(qh − δldah − dbh) ≥ θ (27)

qh ≥ 0 0 ≤ dal ≤ a 0 ≤ dbl ≤ b 0 ≤ dah ≤ a 0 ≤ dbh ≤ b

where (27) follows from (23). The Lagrangian of this problem can be written as:

L = πl
[
u
(
δld

a
l + dbl

)
− δldal − dbl

]
+ πh

[
u (qh)− δhdah − dbh

]
+
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+ λ1πh

[
−qh + δhd

a
h + dbh −

θ

πh
− (δh − δl)dal

]
+

+ λ2πl

(
qh − δldah − dbh −

θ

πl

)
+ λ3d

a
l + λ4d

b
l + λ5d

a
h + λ6d

b
h + λ7qh+

+ λ8 (a− dal ) + λ9

(
b− dbl

)
+ λ10 (a− dah) + λ11

(
b− dbh

)
and the first order conditions are:

[qh] : πhu
′ (qh)− λ1πh + λ2πl + λ7 = 0 (28)

[dal ] : πl
[
u′
(
δld

a
l + dbl

)
− 1
]
δl − λ1πh(δh − δl) + λ3 − λ8 = 0 (29)

[dbl ] : πl
[
u′
(
δld

a
l + dbl

)
− 1
]

+ λ4 − λ9 = 0 (30)

[dah] : −πhδh + λ1πhδh − λ2πlδl + λ5 − λ10 = 0 (31)

[dbh] : −πh + λ1πh − λ2πl + λ6 − λ11 = 0 (32)

Firstly, λ7 = 0, otherwise qh = 0. Secondly, if 0 < qh < ∞, then from (28) λ1 > 0 and

then (26) is binding. Thirdly, substituting (26) in (27) we find the condition

dah − dal ≥
θ

πl(δ − δl)
(33)

that implies a ≥ dah ≥ θ[πl(δ − δl)]−1 = ā, dal < a and λ5 = λ8 = 0. Notice that this

strategy is feasible iff a ≥ ā and from now on we assume that this condition is satisfied.

Forthly, from (29) and (30) we have dbl < b iff ql = q∗, but this is clearly not possible

because b < q∗ by assumption and from (29) ql < q∗ if dal > 0; therefore dbl = b.

Claim: qh ≤ q∗. From (28) and (32) qh > q∗ implies dbh = 0, then we can focus on the

case in which b = 0. Suppose a is sufficiently large such that λ10 = 0. By rearranging

(32) we have λ2πl = (λ1 − 1)πhδh. If λ2 = 0, then λ1 = 1. From (28) q = q∗, and the

claim is correct. From (26) and (29) it is possible to retrieve the values of dal and dah

consistent with λ2 = 0. We define them d̂al and d̂ah, respectively. Consider now the case

in which λ2 > 0. If q > q∗ we must have dah > d̂ah, and dal > d̂al because (33) is binding.

But λ2 > 0 implies λ1 > 1, and from (29) dal < d̂al . Since this is a contradiction the

claim is proved. Moreover, when λ10 = 0 we have λ2 = 0.

The problem reduces to find a possible unique vector
(
qh, d

a
l , d

a
h, d

b
h

)
such that the fol-

lowing conditions – derived from (28)-(32) – are satisfied:

πh [u′ (qh)− 1] δh = −λ2πl(δh − δl) + λ10 (34)

πh [u′ (qh)− 1] = −λ6 + λ11 (35)
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πl [u
′ (δld

a
l + b)− 1] δl = (δh − δl) [πhu

′ (qh) + πlλ2]− λ3 (36)

(δh − δl)dal + qh +
θ

πh
= δhd

a
h + dbh (37)

together with the relative complementary slackness conditions and (33).

Case I. Suppose dah < a. Therefore λ10 = 0 and from (34) we have qh = q∗ and λ2 = 0.

From (35), λ6 = λ11 = 0. From (36), dal is the solution to

u′ (δld
a
l + b)− 1 =

πh
πl

δh − δl
δl

− λ3

Let q̂l ≡ ξ
(
πh
πl

δh−δl
δl

+ 1
)

, where ξ(·) is defined as the inverse function of u′(·). Then

dal = max{0, (q̂l − b)/δl}, where dal = 0 (λ3 ≥ 0) when b ≥ q̂l. Given dal , from (37) we

find δhd
a
h + dbh. We cannot pin down dah and dbh, although (33) must hold. Given b < q∗,

this can be a solution if and only if a ≥ â(b), where â(b) is a function of b that returns

the lowest value of a such that qh = q∗ given b. It can be retrived from (36)-(37) by

imposing qh = q∗ and dbh = b:

â(b) = max

{
dal + ā,

[
(δh − δl)dal + q∗ +

θ

πh
− b
]
/δh

}

Notice that â(b) is weakly decreasing in b.

Case II. Suppose that λ11 > 0. Then, from the complementary slackness condition

dbh = b, λ6 = 0 and from (35) qh < q∗. Then, from (34) we have λ10 > 0 and dah = a.

It remains to determine dal and qh, looking separately to the case in which (33) is slack

(λ2 = 0) or binding (λ2 > 0). If b ≥ q̂l, from (36) we have λ3 > 0, that implies dal = 0.

In this case (33) is slack, λ2 = 0 and, from (37), qh = δha + b − θ/πh. Consider now

the case in which b < q̂l. If λ2 > 0, dal = a − θ[πl(δ − δl)]−1 and from (37) we have

qh = δla+ b+ θ/πl. If the following condition is satisfied:

u′
(
δla+ b− θδl

πl(δ − δl)

)
− 1 >

πh
πl

δh − δl
δl

u′
(
δla+ b+

θ

πl

)

λ2 is actually greater than 0 and we are done. If this is not true, λ2 = 0 and (33) is slack.

Then, we can jointly solve for qh and dal in the positive orthant of the (dal , qh) space.

Considering (37), we have that qh is monotonically non-increasing in dal , it is equal to

δha+ b− θ/πh for dal = 0 and it vanishes at dal = δha+b−θ/πh
δh−δl . Looking to (36), we have:

dal = 0 for 0 < qh ≤ q̂h ≡ δl
δh−δl

πl
πh
ξ (Γ(b)), where Γ(b) ≡ u′ (b) − 1; dal = (q̂l − b)/δl

when qh = q∗; dal is monotonically non-decreasing when q̂h < qh < q∗. Therefore, given
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qh < q∗ there exists a unique vector (dal , qh) that solve (36) and (37).

This is the solution when ā ≤ a < â(b).

Proof of Proposition 4. Since we consider stationary equilibria with no information

acquisition the objective function of the portfolio optimization problem is the following:

max
a′,b′,q,da,db

−ρ
a − βδ
β

a′ − ρb − β
β

b′ + Sb
(
q, da, db

)
subject to (14) and (15), the usual nonnegative constraints for the choice variables and

da ≤ a′, db ≤ b′. Since the objective function is concave and the inequality constraints

are continuously differentiable convex functions, the first order conditions are sufficient

to find a global maximum. Therefore, we can focus on symmetric equilibria. We main-

tain the same notation of the proof of Proposition 1. The first order conditions with

respect to q, da and db are (16), (17) and (18). The additional focs are:

[a′] :
ρa − βδ

β
= λ4 + ζ1 (38)

[b′] :
ρb − β
β

= λ6 + ζ2 (39)

where ζ1 and ζ2 are lagrangian multipliers associated with the nonnegative constraints

for a′ and b′. Since we assumed A,B > 0 and the asset market must clear, in equilibrium

ζ1 = ζ2 = 0. Let us define Ra ≡ ρa/β − δ and Rb ≡ ρb/β − 1. We consider all the

possible cases in which Ra, Rb ≥ 0 (otherwise there would be an infinite demand for

assets).

Case I: Rb = Ra > 0. In this case from (38) and (39) we have λ4, λ6 > 0, therefore

da = a′ and db = b′. Substituting (17) and (18) in (38) and (39), we see that Rb = Ra

requires λ2 = 0, then a′ < ā. In this equilibrium q is such that Ra = Rb = u′(q) − 1

and q < q∗. Since we are considering symmetric equilibria, Ra and Rb are retrieved

by substituting the market clearing conditions of the assets market in the first order

conditions. Then the existence of this equilibrium requires A < ā and B < b̄(A).

Case II: Rb = Ra = 0. In this case we have λ4, λ6 = 0, therefore da < a′, db < b′ and

from (17) or (18) we have q = q∗. The existence of this equilibrium requires B ≥ b̄(A).

Case III: Rb > Ra > 0. In this equilibrium we have λ4, λ6 > 0, therefore da = a′ and

db = b′. However, Rb > Ra, then substituting (17) and (18) in (38) and (39) we need

λ2 > 0. Given da = a′, we need q = δla
′+ b′+ θ/πl < q̃ (otherwise da < a′ and λ4 = 0).
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Therefore, this equilibrium exists if A > ā and B < b̃ and asset prices are such that:

Rb = u (δlA+B + θ/πl)− 1

Ra = u (δlA+B + θ/πl)
δl
δ
− 1

Case IV: Rb > Ra = 0. In this case we have λ4 = 0 and λ6 > 0, therefore da < a′

and db = b′. Since Rb > Ra, by substituting (18) in (39) we need λ2 > 0. Now, λ6 > 0

implies q < q∗ from (18). There are two possible cases. If λ1 > 0, then λ2 > 0 implies

da = ā and q = δā + b′. Therefore, this equilibrium requires A ≥ ā and B ∈
[
b̃, b̄(A)

)
.

If λ1 = 0, then from (17) we have q = q̃. Then this equilibrium requires B ∈
[
0, b̃
)

and

A ≥ ã(B).

Case V: Rb < Ra. This cannot part of an equilibrium because by substituting (17)

and (18) in (38) and (39) and using (16) we get

Rb = u′(q)− 1

Ra = u′(q)− 1− λ2
δ − δl
δ

Then Ra = Rb − λ2
δ−δl
δ , but Ra > Rb implies δ < δl, that is obviously impossible.

Proof of Proposition 5. See case IV in the proof of Proposition 4.

Proof of Proposition 6. The goal is to construct a symmetric general equilibrium in

which A ≥ max {ã(0), â(0)}, B < b̄ (ā), prices are such that all buyers choose the same

portfolio (A,B) and V N (A,B) ≥ V I(A,B).

Notice that for a given (a, b) we have V N ≥ V I if SN ≥ SI , where we define SN as

the surplus of the buyer in the DM trade when private information is avoided, and SI

as the expected surplus in a trade in which sellers acquire information. Let us define

ǎ ≡ max {ã(0), â(0)}. Since both ã(b) and â(b) are decreasing in b, for any given b and

ǎ′ > ǎ we have SN (ǎ′, b) = SN (ǎ, b) and SI (ǎ′, b) = SI (ǎ, b). Suppose b̃ > 0 (but

this is not necessary). When a = ǎ, ∂SN/∂b is equal to (δ − δl)/δl for b ∈ (0, b̃] and to

u′ (b+ δā) − 1 for b ∈
[
b̃, b̄(ā)

)
, while ∂SI/∂b = (δ − δl)/δl for b ∈ (0, q̂l] and equal to

πlu
′ (b)− 1 > 0 for b ∈

[
q̂l, b̄(ā)

)
. Both derivatives are continuous.

At b̄(ā) we have SN > SI and limb←b̄(ā) ∂S
N (ǎ, b) /∂b < limb←b̄(ā) ∂S

I (ǎ, b) /∂b. There-

fore, by continuity there is always some b̌ < b̄ (ā) such that SN
(
ǎ, b̌
)
≥ SI

(
ǎ, b̌
)

and

∂SN
(
ǎ, b̌
)
/∂b < ∂SI

(
ǎ, b̌
)
/∂b. Then, a vector of asset prices such that Ra = 0 and

0 ≥ Rb < ∂SN
(
ǎ, b̌
)
/∂b implies that the portfolio optimization problem of the buyers

has a unique local optimum. Then, all buyers choose the same portfolio of assets to
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bring in the DM. Therefore, if A > ǎ and B > b̌ there exists a symmetric equilibrium

with no information acquisition.
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B Risk averse sellers

We solve the problem of a buyer that wants to avoid the production of private in-

formation when the seller is risk averse. We suppose that the utility of the buyer is

U b = u(q)−h, as in the baseline model, while the utility of the seller is Us = −c(q)+ν(c).

We assume that: c(0) = 0, c′(·) > 0 and c′′(·) > 0; ν(0) = 0, ν′(·) > 0, ν′′(·) < 0 and

ν(·) satisfies the Inada conditions. The problem is:

max
q,da,db

u(q)− δda − db

s.t. − c(q) + πlν (pl) + πhν (ph) ≥ 0 (40)

c(q)− ν (pl) ≤ θ/πl (41)

db ≤ b, da ≤ a

where pl = db + δld
a and ph = db + δhd

a. Notice that the incentive constraint is derived

as in the baseline model. Before to solve this problem, let us suppose that (40) is binding

and substitute it in (41). We get:

ν (ph)− ν (pl) ≤
θ

πlπh
(42)

If we assume that (42) is binding and db = b, we find the threshold ā(b). Notice that

ā(b) is increasing in b, because of the concavity of ν(·). Now we can write down the

Lagrangian:

L(q, da, db) = u(q)− δda − db + λ1 [−c(q) + πlν (pl) + πhν (ph)] +

λ2 [−c(q) + ν (pl)] + λ3

(
b− db

)
+ λ4 (a− da) + λ5d

b + λ6d
a

The first order conditions are:

[q] : u′(q)− (λ1 + λ2) c′(q) = 0 (43)

[da] : −δ + λ1 [πlν
′ (pl) δl + πhν

′ (ph) δh] + λ2ν
′ (pl) δl − λ4 + λ6 = 0 (44)

[db] : −1 + λ1 [πlν
′ (pl) + πhν

′ (ph)] + λ2ν
′ (pl)− λ3 + λ5 = 0 (45)

Equation (43) implies that at least one constraint among (40) and (41) is binding.

Therefore, we consider separately the three possible cases.
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Case I: λ1 > 0, λ2 = 0. We can rewrite (44) and (45) as follows:

πlν
′ (pl)

δl
δ

+ πhν
′ (ph)

δh
δ

=
c′(q)

u′(q)

(
1 +

λ4 − λ6

δ

)
(46)

πlν
′ (pl) + πhν

′ (ph) =
c′(q)

u′(q)
(1 + λ3 − λ5) (47)

As long as da > 0 we have ν′ (pl) > ν′ (ph). Therefore, the LHS of (46) is lower than

the LHS of (47): they are both weighted averages of ν′ (pl) and ν′ (ph), with the first

putting more weight on ν′ (ph). Then, λ4 = 0 implies λ3 > 0 and db = b, while λ3 = 0

implies λ6 > 0 and da = 0.

When λ3 = 0, from (47) we have ν′
(
db
)

= c′(q)/u′(q), while from (40) we have c(q) =

ν
(
db
)
. These two equations must be solved for db and q and the solution is unique.

The first equation implies that q is decreasing in db, q ↑ ∞ when db ↓ 0 and q ↑ 0 when

db ↓ ∞. The second equation implies that q is increasing in db, q ↑ 0 when db ↓ 0 and

q ↑ ∞ when db ↓ ∞. We define this solution (b∗, q∗b ).

When λ4 = 0, from (46) we have

πlν
′ (b+ δld

a)
δl
δ

+ πhν
′ (b+ δhd

a)
δh
δ

=
c′(q)

u′(q)
(48)

Using this equation and (40) we have a system of two equations in two unknowns, da and

q. Also in this case the solution is unique. According to equation (48), q is decreasing

in da. When da = 0 and b > 0, then 0 < q < ∞ satisfies ν′ (b) = c′(q)
u′(q) . When da ↑ ∞,

q ↓ 0. According to equation (40), q is increasing in da. When da = 0 and b > 0, q

satisfies c(q) = ν (b). When da ↑ ∞, q ↑ ∞. Since b < b∗, we have da > 0 and the system

of equations has a unique solution. We define this solution as (a∗, qa), where both a∗

and qa depend on b.

When λ4 > 0, db = b, da = a and q is determined by (40).

This solution requires a ≤ ā(b).

Case II: λ1 = 0, λ2 > 0. We can rewrite (44) and (45) as:

ν′ (pl)
δl
δ

=
c′(q)

u′(q)

(
1 +

λ4 − λ6

δ

)
(49)

ν′ (pl) =
c′(q)

u′(q)
(1 + λ3 − λ5) (50)

λ4 = 0 implies λ3 > 0 and db = b. When λ4 = 0 the optimal consumption q̃ is lower that

qa in Case I. To see this, notice that from (48) we have ν′ (pl)
δl
δ = c′(qa)

u′(qa) −
πh
πl
ν′ (ph) δhδ ;

it implies ν′ (pl)
δl
δ < c′(qa)

u′(qa) . Suppose now that q̃ = qa. From (49) we have ν′ (pl)
δl
δ =
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c′(qa)
u′(qa) , that implies da < a∗. But this cannot be possible, because (40) is slack. Then,

for a given qa we would need a larger da. Therefore, q̃ < qa.

When λ4 = 0 we use (49) and (41) to pin down q̃ and da. By using the same argument

for Case I it is possible to show that this system of equations has a unique solution.

Moreover, when λ4 = 0 we have that q̃ does not change with b. Indeed, suppose that b

increases and da is unchanged. From (41) we have that q must increase and this implies

that c′(q)/u′(q) increases too. But also pl increases, then the LHS of (49) decreases and

we have a contradiction. Therefore, if b increases we need da to decrease in order to

keep pl constant.

When λ4 > 0, db = b, da = a and q is determined by (41).

The existence of this solution requires a ≥ ā(b) and q̃ > q̄, where q̄ solve (40) when it is

binding and db = b, da = ā(b).

Case III: λ1 > 0, λ2 > 0. In this case db = b, da = ā(b) and q is determined by (40).

This solution requires a > ā(b) and q ≥ q̃.
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C Sufficient conditions for V b = V N

In this appendix we derive sufficient conditions for V b = V N , with q̃ > δā. The defini-

tions of q̃, ā, b̃, q̂l, ã and â are those in the main text; here we define b̄ ≡ b̄ (ā). Moreover,

we also define SI(a, b) ≡ πlS
b
l [x∗l (a, b)] + πhS

b
h [x∗h(a, b)] and SN (a, b) ≡ Sb [x∗(a, b)],

with x∗l , x∗h, x∗ the optimal choice in the DM given (a, b). The result is derived in

different steps.

Let us define Γ(b) ≡ πl [u (b)− b] + πh [u (q∗)− q∗ − θ/πh] and α a constant in the open

interval (1/2, 1).

Lemma 2 There exist a κ ∈ (0, 1) and a positive increasing function θ∗(δl/δ) such that

for δl/δ ≥ κ and θ = αθ∗(δl/δ) we have b̃ > 0 and Γ(b) ≤ maxa S
N (a, b) for all b.

Proof of Lemma 2. Suppose a is sufficiently big, such that a > arg maxx S
N (x, b)

holds for all b (it is sufficient that this holds at b = 0) and b̃ ∈ (0, b̄). Then, we have:

SN (a, b) ≡


u (q̃)−

(
q̃ − θ

πl

)
δ
δl

+ δ−δl
δl
b for b ∈ [0, b̃]

u (b+ δā)− b− δā for b ∈ [b̃, b̄]

u (q∗)− q∗ for b ≥ b̄

Let us define ξ(x) ≡ u′−1
(x) and θ∗(δl/δ) ≡ ξ (δ/δl)

πl(δ/δl−1)
δ/δl

. For a given δl/δ, we have

that θ ≤ θ∗(δl/δ) implies q̃ ≥ δā and b̃ > 0. By construction SN (a, b) is continuous in b

for any a, δl/δ < 1 and θ ∈ (0, θ∗(δl/δ)). Note also that for δl/δ ↑ 1 we have q̃ ↑ q∗ and,

provided θ = αθ∗, δā ↑ αq∗.

Fix b and θ = αθ∗(δl/δ). If δl/δ ↑ 1 we have SN (a, b) ↑ u(q∗) − q∗ > Γ(b). As δl/δ

decreases, SN (a, b) decreases too, while Γ(b) increases (because θ decreases). Then

there exist some κ̄(b) > 0 such that for δl/δ ≥ κ̄(b) we have SN (a, b) ≥ Γ(b). Then it is

sufficient to take κ = max κ̄(b).

Lemma 2 is derived with respect to δ/δl, but since δ = πlδl+πhδh, the same result holds

if we work in terms of δh/δl. Hereafter, we fix α ∈ (1/2, 1) and θ∗ is a function defined

as in Lemma 2.

Lemma 3 Define a′ = max {ã(0), â(0)}. There exists a κ ∈ (0, 1) such that if δl/δh ≥ κ

and θ = αθ∗ then SN (a′, b) ≥ SI(a′, b) for all b.

Proof of Lemma 3. Firstly notice that Γ(b) in Lemma 2 is equal to SI(a′, b) for

b ≥ q̂l. According to Lemma 2 there exists κ ∈ (0, 1) such that for δl/δh ≥ κ and

θ = αθ∗ we have SN (a′, b) ≥ SI(a′, b) for b ≥ q̂l.
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Let us now consider the partial derivatives of SI and SN with respect to b for b ∈ (0, b̄):

SIb =

πh
δh−δl
δl

= δ−δl
δl

for b ∈ (0, q̂l)

πl [u
′ (b)− 1] ≤ δ−δl

δl
for b ∈ [q̂l, b̄)

SNb =


δ−δl
δl

for b ∈ (0, b̃)

[u′ (δā+ b)− 1] ≤ δ−δl
δl

for b ∈ [b̃, b̄)

Since SN (a′, q̂l) ≥ SI (a′, q̂l), if q̂l ≤ b̃ then SN (a′, b) ≥ SI (a′, b) also for b ∈ [0, q̂l]. If

q̂l > b̃, then SN (a′, b) < SI (a′, b) for b ∈ [0, q̂l).

According to the previous lemma, there exist conditions that guarantee maxa S
N (a, b) ≥

maxa S
I(a, b) for all b. Given the linearity of W b, we can fix a κ = κ̄ such that

maxa V
N (a, b) ≥ maxa V

I(a, b) for all b.

Proposition 7 Suppose u′′′(·) ≥ 0, δl/δh ≥ max
{
κ̄,
√
πh
}

and θ = αθ∗. Then ã(b) <

â(b) and V b = V N .

Proof of Proposition 7. We start proving that V N (a, 0) > V I(a, 0) for all a > ā.

Later, we generalize this result to all b > 0.

Let us assume b = 0. Firstly, notice that lima→ā+ V
N−V I > 0, because by strict concav-

ity of u(·) we have u (δlā+ θ/πl)−δā = u (δā)−δā > πl [u (δlā)− δlā]+πh [u (δhā)− δhā] >

lima→ā+ S
I(a, 0).

Now, we show that ∂V N

∂a ≤ ∂V I

∂a for all a > ā. Since ∂W b

∂a is the same under both

strategies, it is just sufficient to check the marginal payoff in the DM. Then, the relevant

partial derivatives are:

SIa =


πl [u

′ (δl(a− ā))− 1] δl + πh [u′ (δla+ θ/πl) δl − δh] for a ∈ (ā, a′′]

πh [u′ (qh)− 1] δh for a ∈ [a′′, â(0))

0 for a ≥ â(0)

SNa =

u
′ (δla+ θ/πl) δl − δ for a ∈ (ā, ã(0))

0 for a ≥ ã(0)

where a′′ is such that for a ≤ a′′ we have dah − dal = ā.

Since u′′′ > 0, if a′′ ≥ ã(0), then SIa ≥ SNa . Then ∂V I

∂a ≥
∂V N

∂a for all a > ā and

ã(0) ≤ â(0). This also implies that if V I ≥ V N for some ǎ, then V I ≥ V N for

all a > ǎ. But this is not possible, because δl/δh ≥ κ̄ and Lemma 3 implies that
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V N (â(0), b) ≥ V I(â(0), b).

If a′′ < ã(0), then SIa > SNa for a ∈ (ā, a′′]. Since both SIa and SNa are decreas-

ing, for a > a′′ we must check that SIa has a slope lower than SNa in absolute terms;

since at a′′ we have SIa > SNa , this would guarantee that SIa and SNa never cross and

ã(0) < â(0). By taking second derivatives, we need |u′′(qh)πhδh
∂qh
∂a | ≤ |u

′′(qh)πhδ
2
h| ≤

|u′′ (δla+ θ/πl) δ
2
l |, where the first inequality derives from ∂qh

∂a ≤ δ
h
a . Then

|u′′(qh)πhδ
2
h| ≤ |u′′ (δla+ θ/πl) δ

2
l | =⇒ |u′′(qh)|

|u′′ (δla+ θ/πl) |
≤ δ2

l

πhδ2
h

Since u′′′(·) ≥ 0 the LHS is ≤ 1, while the RHS is ≥ 1 because δl/δh ≥
√
πh. Then

∂V I

∂a ≥
∂V N

∂a for all a > ā and ã(0) ≤ â(0). This implies V N (a, 0) ≥ V I(a, 0) for all a.

For b > 0 the proof follows the same logic above as long as b < b̃. For b ≥ b̃ the result

is immediate from Lemma 3.
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