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A The model

A.1 The natural borrowing limit in (8)

When the individual is unemployed, they can borrow up to the present value of the �ow
of unemployment bene�ts minus minimum consumption. Using minimum consumption from
(7), the present value of an unemployed worker that remains unemployed forever is given byR1
t
e�r[��t]

�
b (�)� cmin

�
d� =

R1
t
e�r[��t] (1� �) b (�) d�: Taking growth of the bene�ts from

(3) into account, b(�) = b(t)eg[��t], yields the smallest wealth level an individual can hold,

anat (t) = � (1� �) b (t)

Z 1

t

e�r[��t]eg[��t]d� = �(1� �) b (t)

r � g
: (A.1)

A.2 Keynes-Ramsey rules in the model with trend

The four constraints in the main text (1), (2), (3) and (4) are reproduced here for convenience,

da (t) = fr (t) a (t) + z (t)� c (t)g dt; (A.2)

dz (t) = gz (t) dt+ [w (� (t))� z (t)] dq�(t) + [b (� (t))� z (t)] dqs (t) ; (A.3)

� (t) = �0e
gt; (A.4)

dr (t) = [rhigh � r(t)] dqlow (t) + [rlow � r(t)] dqhigh (t) ; (A.5)

where w (� (t)) = ŵ� (t) and b (� (t)) = b̂� (t). When we plug (A.4) into (A.3), we obtain a
system of three state variables,

da (t) = fr (t) a (t) + z (t)� c (t)g dt; (A.6)

dz (t) = gz (t) dt+
�
ŵ�0e

gt � z (t)
�
dq�(t) +

h
b̂�0e

gt � z (t)
i
dqs (t) ; (A.7)

dr (t) = [rhigh � r(t)] dqlow (t) + [rlow � r(t)] dqhigh (t) : (A.8)

These three variables, the wealth level a (t) ; current income z (t) 2 fw (� (t)) ; b (� (t))g and
the interest rate r(t); describe the state v (t) � fa (t) ; z (t) ; r(t)g of an individual.
The individual maximizes their objective function by choosing a path fc (v (t))g of consump-

tion subject to the budget constraint (A.6) and the equation for their employment status (A.7).
The changes in the interest rate in (A.8) are not anticipated as the individual is assumed to
be myopic with respect to interest rate changes (for numerical reasons as discussed in footnote
23). Given the state v (t) ; we de�ne the value function as V (v (t)) � maxfc(v(t))g U (t) subject
to (A.6) and (A.7). The Bellman equation for this problem reads (see Sennewald, 2007, or
Wälde, 2012, part IV)

�V (v (t)) = max
c(v(t))

�
u (c (v (t))) +

1

dt
EtdV (v (t))

�
: (A.9)
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Computing the di¤erential dV (v (t)) ; taking the constraints (A.6) and (A.7) into account
and forming expectations yields, suppressing time arguments for brevity,

�V (v) = max
c

�
u (c) + [ra+ z � c]Va (v) + gzVz (v)

+s [V (a; b; r)� V (a; z; r)] + � [V (a; w; r)� V (a; z; r)]

�
; (A.10)

where Vx (v) stands for the partial derivative of V (v) with respect to x; i.e. Vx (v) � @V (v) =@x.51

An optimal choice of consumption requires the �rst-order condition to equate marginal utility
from consumption with the shadow price of wealth,

u0 (c (v)) = Va (v) : (A.11)

� Evolution of the shadow price

Using the budget constraint (A.2) and the evolution of labour income (A.3), the di¤erential
of the shadow price of wealth reads

dVa (v) = [Vaa (v) (ra+ z � c) + gzVza (v)] dt (A.12)

+ [Va (a; w; r)� Va (a; z; r)] dq� + [Va (a; b; r)� Va (a; z; r)] dqs

The maximized version of the Bellman equation (A.10) simply replaces the control variable c
by its optimal value c (v),

�V (v) =

�
u (c (v)) + [ra+ z � c (v)]Va (v) + gzVz (v)

+s [V (a; b; r)� V (a; z; r)] + � [V (a; w; r)� V (a; z; r)]

�
: (A.13)

Di¤erentiating with respect to wealth yields, using the envelope theorem,

�Va (v) =

�
rVa (v) + [ra+ z � c (v)]Vaa (v) + gzVaz (v)

+s [Va (a; b; r)� Va (a; z; r)] + � [Va (a; w; r)� Va (a; z; r)]

�
: (A.14)

After rearranging,

(�� r)Va (v)� s [Va (a; b; r)� Va (a; z; r)]� � [Va (a; w; r)� Va (a; z; r)]

= [ra+ z � c (v)]Vaa (v) + gzVaz (v) :

Inserting into (A.12), taking Vaz (v) = Vza (v) for granted,52 gives

dVa (v) = f(�� r)Va (v)� s [Va (a; b; r)� Va (a; z; r)]� � [Va (a; w; r)� Va (a; z; r)]g dt
+ [Va (a; w; r)� Va (a; z; r)] dq� + [Va (a; b; r)� Va (a; z; r)] dqs: (A.15)

� Inserting �rst-order condition

When we now replace the shadow price by marginal utility from the �rst-order condition
(A.11), we get the Keynes-Ramsey rule for marginal utility,

du0 (c (v)) =

�
(�� r)u0 (c (v))� s [u0 (c (a; b; r))� u0 (c (a; z; r))]

�� [u0 (c (a; w; r))� u0 (c (a; z; r))]

�
dt

+ [u0 (c (a; w; r))� u0 (c (a; z; r))] dq� + [u
0 (c (a; b; r))� u0 (c (a; z; r))] dqs: (A.16)

51If individuals anticipated changes in interest rates from (A.8), two additional jump terms would appear in
(A.10). This would lead to an additional reason for precautionary saving: When the interest rate is high, there
is precautionary saving (as the interest rate could drop). When the interest rate is low, there is dissaving.
52We assume that the value function V (�) is continously increasing and concave and that its second partial

derivatives are continuous. Thus, Vaz (v) = Vza (v) according to the Schwarz�s theorem.

A - 2



For an employed individual where, z = w, this reads

du0 (c (a; w; r)) = f(�� r)u0 (c (a; z; r))� s [u0 (c (a; b; r))� u0 (c (a; w; r))]g dt (A.17)

+ [u0 (c (a; b; r))� u0 (c (a; w; r))] dqs:

We now transform this optimality condition in marginal utilities into one in consump-
tion levels. Let f (:) be the inverse function for u0, i.e. f (u0) = c and apply the CVF to
f (u0 (c (a; w; r))) This gives

df (u0 (c (a; w; r))) = f 0 (u0 (c (a; w; r))) f(�� r)u0 (c (a; w; r))� s [u0 (c (a; b; r))� u0 (c (a; w; r))]g dt
+ [f (u0 (c (a; b; r)))� f (u0 (c (a; w; r)))] dqs:

As f (u0) = c and therefore f 0 (u0 (c (a; w; r))) = df(u0(c(a;w;r)))
du0(c(a;w;r)) = dc(a;w;r)

du0(c(a;w;r)) =
1

u00(c(a;w;r)) ; we get

dc (a; w; r) =
1

u00 (c (a; w; r))
f(�� r)u0 (c (a; w; r))� s [u0 (c (a; b; r))� u0 (c (a; w; r))]g dt

+ [c (a; b; r)� c (a; w; r)] dqs

which is equivalent to

u00 (c (a; w; r))

u0 (c (a; w; r))
dc (a; w; r) =

�
�� r � s

�
u0 (c (a; b; r))

u0 (c (a; w; r))
� 1
��

dt

+
u00 (c (a; w; r))

u0 (c (a; w; r))
[c (a; b; r)� c (a; w; r)] dqs: (A.18)

Multiplying by ��1�and using the instantaneous CRRA utility function u(c(t)) = c(t)1���1
1�� ,

we get u
00(c(a;w;r))
u0(c(a;w;r)) =

��
c(a;w;r)

and after some rearrangements

dc (a; w; r) =
c (a; w; r)

�

�
r � �+ s

��
c (a; w; r)

c (a; b; r)

��
� 1
��

dt+ [c (a; b; r)� c (a; w; r)] dqs

(A.19)
which is (9a) in the main text.
The derivation of dc (a; b; r) also starts from (A.16) and steps are in perfect analogy. Let us

now use the notation cr(a; z) instead of c (a; z; r) for convenience.

B Detrending and equilibrium

B.1 Evolution of detrended variables

Given the trend introduced in (3), detrended income is ẑ (t) � z (t) =� (t) : Given the evolution
of z (t) from (4) and the fact that the trend � (t) is deterministic, we obtain a SDE for ẑ (t) ;

dẑ (t) = d
z (t)

� (t)
=

�
1

� (t)
(w (�(t))� z (t))

�
dq�(t)�

�
1

� (t)
(b (�(t))� z (t))

�
dqs (t)

= [ŵ � ẑ] dq�(t) +
h
b̂� ẑ

i
dqs (t) : (B.1)
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� The budget constraint

We now compute the evolution of detrended wealth â (t) � a (t) =� (t) ;

d
a (t)

� (t)
=
� (t) da (t)� a (t) d� (t)

�2 (t)
=
� (t) [[ra (t) + z (t)� c (t)] dt]� a (t) g� (t) dt

�2 (t)

=
1

� (t)
[ra (t) + z (t)� c (t)� a (t) g] dt =

1

� (t)
[(r � g) a (t) + z (t)� c (t)] dt:

We can write this also as expression in detrended variables only, i.e.

dâ (t) = f(r � g) â (t) + ẑ (t)� ĉ (t)g dt: (B.2)

This describes the evolution of detrended wealth â (t) as a function of detrended income ẑ (t)
and detrended consumption ĉ (t) :

� Detrended consumption

The evolution of detrended consumption follows

dĉẑr (â) � d
czr(a(t))

� (t)
=
� (t) dczr(a(t))� czr(a(t))d� (t)

�2 (t)
:

For an employed worker, using eq. (A.19), this reads

dĉŵr (â(t)) = d
cr (a(t); w (t))

� (t)

=
� (t)

n
r � �+ s

h�
cr(a(t);w(t))
cr(a(t);b(t))

��
� 1
io

cr(a(t);w(t))
�

� cr (a(t); w (t)) g� (t)

�2 (t)
dt

=

n
r � �+ s

h�
cr(a(t);w(t))
cr(a(t);b(t))

��
� 1
io

cr(a(t);w(t))
�

� cr (a(t); w (t)) g

� (t)
dt

=
r � �� �g + s

h�
cr(a(t);w(t))
cr(a(t);b(t))

��
� 1
i

�

cr (a(t); w (t))

� (t)
dt

=

(
r � �

�
� g +

s

�

" 
cr (a(t); w (t)) � (t)

�1

cr (a(t); b (t)) � (t)
�1

!�
� 1
#)

ĉŵr (â(t)) dt:

Employing the ĉẑr (â) notation, we obtain the detrended Keynes-Ramsey rule for optimal con-
sumption of an employed worker,

dĉŵr (â(t)) =

�
r � �

�
� g +

s

�

��
ĉŵr (â(t))

ĉb̂r (â(t))

��
� 1
��

ĉŵr (â(t)) dt: (B.3)

This result holds in a similar fashion for the case of an unemployed individual. We �nd

dĉb̂r (â(t)) =

(
r � �

�
� g � �

�

"
1�

 
ĉb̂r (â(t))

ĉŵr (â(t))

!�#)
ĉb̂r (â(t)) dt (B.4)
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B.2 Consumption and wealth dynamics �low-interest-rate regime
(15)

Lemma 1 In the low-interest-rate regime, i.e. when r < � + �g as in (15), the zero motion
line for consumption when unemployed does not exist as dĉb̂r (â (t)) =dt < 0 always holds.

Proof. Consumption when unemployed falls i¤

dĉb̂r (â (t)) =dt < 0,
r � �

�
� g � �

�

"
1�

 
ĉb̂r (â (t))

ĉŵr (â (t))

!�#
< 0

, r � �� �g � �

"
1�

 
ĉb̂r (â (t))

ĉŵr (â (t))

!�#
< 0: (B.5)

As r < �+ �g in the low-interest-rate regime and ĉb̂r (â (t)) < ĉŵr (â (t)), condition (B.5) always
holds.
This lemma shows why condition (15) de�nes the low-interest-rate regime. Further proper-

ties of the low-interest-rate regime are as follows. The zero motion lines for wealth are given
by

dâŵ (t) =dt = 0, ĉŵr (t) = (r � g) â (t) + ŵ;

dâb̂ (t) =dt = 0, ĉb̂r (t) = (r � g) â (t) + b̂:

Wealth when employed falls/rises over time i¤ ĉŵr (t) ? (r � g) â (t)+ ŵ: Similarly, wealth when
unemployed falls/rises over time i¤ ĉb̂r (t) ? (r � g) â (t) + b̂:
The zero motion line for consumption when employed, ĉŵr (â (t)) ; is given by

dĉŵr (â (t))

dt
= 0, r � �

�
� g +

s

�

��
ĉŵr â (t))

ĉb̂r (â (t))

��
� 1
�
= 0

, ĉŵr (â (t))

ĉb̂r (â (t))
=

�
1� r � �� �g

s

� 1
�

�  ̂�1: (B.6)

Consumption when employed falls i¤

dĉŵr (â (t))

dt
< 0, r � �

�
� g +

s

�

��
ĉŵr (â (t))

ĉb̂r (â (t))

��
� 1
�
< 0

, r � �� �g + s

��
ĉŵr (â (t))

ĉb̂r (â (t))

��
� 1
�
< 0 (B.7)

, ĉŵr (â (t))

ĉb̂r (â (t))
<

�
1� r � �� �g

s

� 1
�

=  ̂�1: (B.8)

When we express the change in detrended consumption in response to a change in detrended
wealth using (B.2), (B.3), and (B.4), it yields our �nal two-dimensional ODE system for optimal
consumption

dĉŵr (â)

dâ
=

n
r��
�
� g + s

�

h�
ĉŵr (â)

ĉb̂r(â)

��
� 1
io

ĉŵr (â)

(r � g) â+ ŵ � ĉŵr (â)
; (B.9a)

dĉb̂r (â)

dâ
=

n
r��
�
� g � �

�

h
1�

�
ĉb̂r(â)
ĉŵr (â)

��io
ĉb̂r (â)

(r � g) â+ b̂� ĉb̂r (â)
: (B.9b)
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For this ODE system to have a unique solution, we need two boundary conditions, one for
ĉŵr (â) and the other for ĉ

b̂
r (â). (B.6) implies that there exists a â

�
ŵ that holds (B.6). When

â�ŵ is unique, we can assume two boundary conditions to have a unique solution to the ODE
system above. Thus, the zero motion line for consumption when employed is â(t) = â�ŵ, at
which ĉb̂r (â

�
ŵ) =  ̂ĉŵr (â

�
ŵ). As we assume dĉ

ẑ
r (â) =dâ > 0, consumption and wealth dynamics

can be illustrated by �g. 1 in the main text.53

B.3 Consumption and wealth dynamics �high-interest-rate regime
(16)

Lemma 2 In the high-interest-rate regime, i.e when r > � + �g as in (16), the zero motion
line for consumption when employed does not exist as dĉŵr (â (t)) =dt > 0 always holds.

Proof. Consumption when employed falls i¤

dĉŵr (â (t)) =dt > 0,
r � �

�
� g +

s

�

��
ĉŵr (â (t))

ĉb̂r (â (t))

��
� 1
�
> 0

, r � �� �g > �s
��

ĉŵr (â (t))

ĉb̂r (â (t))

��
� 1
�
: (B.10)

As r > �+�g in the high-interest-rate regime and ĉb̂r (â (t)) < ĉŵr (â (t)), condition (B.10) always
holds.
This is why (16) de�nes the high-interest-rate regime. Further properties of the high-

interest-rate regime are as follows. The zero motion lines for wealth and wealth dynamics are
of perfect analogy as in the low-interest-rate regime.
The zero motion line for consumption when unemployed, ĉb̂r (â (t)) ; is given by

dĉb̂r (â (t))

dt
= 0, r � �

�
� g � �

�

" 
1� ĉb̂r (â (t))

ĉŵr (â (t))

!�#
= 0

, ĉb̂r (â (t))

ĉŵr (â (t))
=

�
1� r � �� �g

�

� 1
�

�  ̂b̂: (B.11)

Consumption when unemployed rises i¤

dĉb̂r (â (t))

dt
= 0 > 0, r � �

�
� g � �

�

" 
1� ĉb̂r (â(t))

ĉŵr (â(t))

!�#
> 0

, r � �� �g � �

" 
1� ĉb̂r (â (t))

ĉŵr (â (t))

!�#
> 0 (B.12)

, ĉb̂r (â (t))

ĉŵr (â (t))
>

�
1� r � �� �g

�

� 1
�

: (B.13)

Using the same logic as in the low-interest-rate regime, we argue that there exists a â�
b̂
such

that (B.11) holds. Thus, the zero motion line for consumption when unemployed is â(t) = â�
b̂
, at

which ĉb̂r
�
â�
b̂

�
=  ̂b̂ĉ

ŵ
r

�
â�
b̂

�
. As we assume dĉẑr (â) =dâ > 0, consumption and wealth dynamics

can be illustrated as in �g. 2 in the main text.

53Proofs for these intuitive properties can be found in Bayer and Wälde (2010, 2015).
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C Distributional dynamics - deriving Fokker-Planck equa-
tions

We derive equations (23a) and (23b) from the main text following �ve steps below. We use the
approach described in Bayer and Wälde (2010a, sect. 5) to derive the Fokker-Planck equations
for our case.

� The expected change of some function f

Assume there is some arbitrary function f having the state variables â and ẑ as arguments.
The stochastic processes â and ẑ are respectively described as follows

dâ (�) = f(r � g) â (�) + ẑ (�)� ĉ (�)g d�; (C.1)

dẑ(�) = [ŵ � ẑ] dq�(�) +
h
b̂� ẑ

i
dqs (�) ; (C.2)

where we use the notation ĉ (�) instead of ĉẑr (�) for convenience. Function f has a bounded
support S = (âmin; âmax)�fb̂; ŵg, i.e. f(â; ẑ) = 0 for (â; ẑ) =2 S. The di¤erential of this function
reads (see (Wälde 2012), ch. 10)

df(â(�); ẑ(�)) =
@

@â
f(â(�); ẑ(�)) [(r � g) â (�) + ẑ (�)� ĉ (�)] d�

+ [f (â(�); ŵ)� f(â(�); ẑ(�))] dq�(�)

+
h
f
�
â(�); b̂

�
� f(â(�); ẑ(�))

i
dqs (�) :

Applying the conditional expectations operator Et and dividing by dt yields the heuristic equa-
tion

E�df(â(�); ẑ(�))
d�

=
@

@â
f(â(�); ẑ(�)) [(r � g) â (�) + ẑ (�)� ĉ (�)]

+ � [f (â(�); ŵ)� f(â(�); ẑ(�))]

+ s
h
f
�
â(�); b̂

�
� f(â(�); ẑ(�))

i
:

In what follows, we denote this expression by

Af(â(�); ẑ(�)) � E�df(â(�); ẑ(�))
d�

: (C.3)

� Dynkin�s formula and its manipulation

To abbreviate notation, we now de�ne x(�) := (â(�); ẑ(�)). The expected value of our
function f(x(�)) is, by Dynkin�s formula (see e.g. Yuan and Mao, 2003), given by

Ef(x(�)) = Ef(x(t)) +
Z �

t

E (Af(x(s))) ds: (C.4)

To understand this equation, use the de�nition in (C.3) and formally write it as

Ef(x(�)) = Ef(x(t)) +
Z �

t

Edf(x(s))
ds

ds = Ef(x(t)) +
Z �

t

Edf(x(s)):

This equation implies that the (unconditional) expected value of f(x) at any point in time � is
equal to the expectation for the current value, Ef(x(t)) (given that x(t) is random), plus the
�sum" of the expected future changes from time t to � ,

R �
t
Edf(x(s))ds.
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Let us now di¤erentiate (C.4) with respect to � , i.e. we now ask how the expectations about
f(x(�)) change when � moves further into the future. We �nd that

@

@�
Ef(x(�)) =

@

@�

Z �

t

E (Af(x(s))) ds = E (Af(x(�))) ; (C.5)

where the �rst equality used that Ef(x(t)) is a constant, and the second equality used the
Leibniz rule. Equation (C.5) says that the change in the expectations about f(x(�)) is equal
to the expected change of f(x(�)), where the change is Af(x(�)). This is equation (14.11) in
Davis (1993), the �abstract version of the <...> Kolmogorov backward equation�(p. 30).
We now introduce the density p(â; ẑ; �). The expectation operator E in (C.5) integrates

over all possible states of x(�). At each point in time, â is continuous while ẑ is discrete and
ẑ 2 fb̂; ŵg. Thus, we can express this joint density as

p(â; ẑ; �) = p(â; � jẑ)pẑ(�) = p(â; � jŵ)pŵ(�) + p(â; � jb̂)pb̂(�)
= p(â; ŵ; �) + p(â; b̂; �) = pŵ(â; �) + pb̂(â; �)

where pẑ(�) denotes the probability of being in employment�state ẑ at time � . As pŵ(â; �) and
pb̂(â; �) are densities of (detrended) wealth and time, we then can express

p(â; �) = pŵ(â; �) + pb̂(â; �);

i.e. the joint density of (detrended) wealth and time is equal to a �sub-density�of (detrended)
wealth and time when ẑ = ŵ plus a �sub-density�of (detrended) wealth and time when ẑ = b̂.
We now can write (C.5) as

@

@�
Ef(x(�)) = E (Af(x(s)))

= pŵ(�)

Z âmax

âm in

Af(â; ŵ)p(â; � jŵ)dâ+ pb̂(�)

Z âmax

âm in

Af(â; b̂)p(â; � jb̂)dâ

=

Z âmax

âm in

Af(â; ŵ)p(â; ŵ; �)dâ+
Z âmax

âm in

Af(â; b̂)p(â; b̂; �)dâ

= �ŵ + �b̂ (C.6)

where �ŵ :=
R âmax
âm in

Af(â; ŵ)p(â; ŵ; �)dâ and �b̂ :=
R âmax
âm in

Af(â; b̂)p(â; b̂; �)dâ.

� The adjoint operator and integration by parts

This is now the crucial step in obtaining a di¤erential equation for the density. It consists of
applying an integration by parts formula which allows to move the derivatives in Af(x(�)) into
the density p(x; �). Let us brie�y review this method, without getting into technical details.
Given two functions f; g : R ! R and two �xed real numbers c < d, the product rule of
di¤erentiation

d(f(x)g(x)) = df(x)g(x) + f(x)dg(x) (C.7)

implies that f(d)g(d) � f(c)g(c) =
R d
c
f 0(x)g(x)dx +

R d
c
f(x)g0(x)dx, a formula referred to as

partial integration rule. In particular, it also holds for c = �1 and d = +1, if the function
evaluations are understood as limits for c! �1 and d! +1, respectively. If f has bounded
support, i.e. is equal to zero outside a �xed bounded set, then the function evaluations at �1
vanish and we get Z +1

�1
f 0(x)g(x)dx = �

Z +1

�1
f(x)g0(x)dx (C.8)
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We now apply (C.8) to (C.6). But we �rst compute

Af(â; ŵ) = @

@â
f(â; ŵ)

�
(r � g)â+ ŵ � ĉŵr (â)

�
+ s

�
f
�
â; b̂
�
� f(â; ŵ)

�
Af(â; b̂) = @

@â
f(â; b̂)

�
(r � g)â+ b̂� ĉb̂r(â)

�
+ �

�
f (â; ŵ)� f(â; b̂)

�
;

Now applying integration by parts yields

�ŵ =

�
Z âmax

âm in

f(â; ŵ)

��
r � g � dĉŵr (â)

dâ

�
p(â; ŵ; �) +

�
(r � g)â+ ŵ � ĉŵr (â)

� @
@â
p(â; ŵ; �)

�
dâ

+

Z âmax

âm in

s
�
f
�
â; b̂
�
� f(â; ŵ)

�
p(â; ŵ; �)dâ (C.9)

�b̂ =

�
Z âmax

âm in

f(â; b̂)

("
r � g � dĉb̂r(â)

dâ

#
p(â; b̂; �) +

h
(r � g)â+ b̂� ĉb̂r(â)

i @

@â
p(â; b̂; �)

)
dâ

+

Z âmax

âm in

�
�
f (â; ŵ)� f(â; b̂)

�
p(â; b̂; �)dâ (C.10)

Thus, we �nd

@

@�
Ef(x(�)) = �ŵ + �b̂ =

�
Z âmax

âm in

f(â; ŵ)

��
r � g � dĉŵr (â)

dâ

�
p(â; ŵ; �) +

�
(r � g)â+ ŵ � ĉŵr (â)

� @
@â
p(â; ŵ; �)

�
dâ

+

Z âmax

âm in

s
�
f
�
â; b̂
�
� f(â; ŵ)

�
p(â; ŵ; �)dâ

�
Z âmax

âm in

f(â; b̂)

("
r � g � dĉb̂r(â)

dâ

#
p(â; b̂; �) +

h
(r � g)â+ b̂� ĉb̂r(â)

i @

@â
p(â; b̂; �)

)
dâ

+

Z âmax

âm in

�
�
f (â; ŵ)� f(â; b̂)

�
p(â; b̂; �)dâ (C.11)

� The expected value-an alternative to the Dynkin�s formula

Let us now derive the second expression for the change in the expected value. By de�nition,
and as an alternative to the Dynkin formula (C.4), we have

Ef(x(�)) =
Z âmax

âm in

f(â; ŵ)p(â; ŵ; �)dâ+

Z âmax

âm in

f(â; b̂)p(â; b̂; �)dâ

Di¤erentiating this expression with respect to � gives

@

@�
Ef(x(�)) =

Z âmax

âm in

f(â; ŵ)
@

@�
p(â; ŵ; �)dâ+

Z âmax

âm in

f(â; b̂)
@

@�
p(â; b̂; �)dâ (C.12)

A - 9



� Equating the two expressions

We now equate (C.11) and (C.12). Collecting terms belonging to f(â; ŵ) and f(â; b̂) givesZ âmax

âm in

f(â; ŵ)'ŵdâ+

Z âmax

âm in

f(â; b̂)'b̂dâ = 0 (C.13)

where

'ŵ =�
@

@�
p(â; ŵ; �)�

�
r � g � dĉŵr (â)

dâ
+ s

�
p(â; ŵ; �) + �p(â; b̂; �)

�
�
(r � g)â+ ŵ � ĉŵr (â)

� @
@â
p(â; ŵ; �) (C.14)

'b̂ =�
@

@�
p(â; b̂; �)�

"
r � g � dĉb̂r(â)

dâ
+ �

#
p(â; b̂; �) + sp(â; ŵ; �)

�
h
(r � g)â+ b̂� ĉb̂r(â)

i @

@â
p(â; b̂; �) (C.15)

As (C.13) holds for any arbitrary function f , it requires that

'ŵ = 0 (C.16)

'b̂ = 0 (C.17)

When we rearrange and evaluate (C.16) and (C.17) at � = t we obtain

@

@t
pŵ (â; t) +

�
(r � g) â+ ŵ � ĉŵr (â)

� @
@â
pŵ (â; t) =

�
dcŵr (â)

dâ
� (r � g)� s

�
pŵ (â; t) + �pb̂ (â; t) ;

(C.18)

@

@t
pb̂ (â; t) +

h
(r � g) â+ b̂� ĉb̂r (â)

i @

@â
pb̂ (â; t) = spŵ (â; t) +

"
dcb̂r (â)

dâ
� (r � g)� �

#
pb̂ (â; t) ;

(C.19)

where pŵ(â; t) � p(â; ŵ; t) and pb̂(â; t) � p(â; b̂; t). These are two Fokker�Planck equations.

D The empirical �t

D.1 Data and quantitative phase diagram

D.1.1 Computing continuous time variables

� The interest rate

Imagine we observe a yearly interest rate of 4%. The relationship between a monthly interest
rate rm and a yearly rental rate ry is given by

a0 [1 + ry] = a0 [1 + rm]
12 , rm =

12
p
1 + ry � 1: (D.1)

We can therefore easily compute the monthly interest rate. If we want the continuous time
analogue to the monthly interest rate, we start from the equation that tells us how a certain
capital stock evolves over time with continuous interest payments. This equation reads _a = ra
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whose solution is of course a (t) = a0e
rt: We then obtain the continuous time interest rate by

using
a0e

r = a0 [1 + rm]
n (D.2)

where the unit of time is implicitly de�ned by this equation to mean n months. The continuous
time interest rate is then given by

r = n ln [1 + rm] : (D.3)

As the unit of time in our model is 1 year, n = 12 here and in what follows.

� The time preference rate

We can undertake the same steps and go from a continuous time preference rate to a
corresponding discount factor. When we replace r by � in (D.2) (where we should use �utility�
for interpretation purposes rather than wealth) and solve for the monthly time preference rate,
we get a0e� = a0 [1 + �m]

n , e�=n � 1 = �m: The annual time preference rate is then from
(D.1)

�y = [1 + �m]
12 � 1 = e�12=n � 1: (D.4)

� The wage rate and its unit

Now consider a, say, monthly paid wage. In order to compute the corresponding wage
rate in a continuous time model, we start from an equation similar to the starting point of
(D.2) or similar to a budget constraint, _a = ra + w: The solution to this equation reads
a (t) = a0e

rt + w
r
[ert � 1] : We now use an equation in spirit similar to (D.2),

a0e
r +

w

r
[er � 1] = a0 [1 + rm]

n + �ni=1
wm
�
[1 + rm]

n�i : (D.5)

The left hand side is the wealth level at t = 1 with a continuous interest rate of r and a wage
rate of w: The right hand side is the wealth level at a monthly interest rate and a monthly
wage of wm, where the latter is scaled by a constant �: Given that (D.2) holds, this equation
simpli�es to

w

r
[er � 1] = �ni=1

wm
�
[1 + rm]

n�i , w =
r

er � 1�
n
i=1

wm
�
[1 + rm]

n�i : (D.6)

Concerning units of measurement, the monthly wage wm is measured in US$. Then the unit
of measurement in the model is US$ as well. If we scale the monthly wage by � = 1000 or by
� = 345:07, the wage rate is measured in 1000 US$ or US$. In fact, we set � = 1000 for our
numerical solution. The same logic applies to other payments like unemployment bene�ts or
pension payments or other.

� Wage growth

Let the annual growth of the real wage be gw (which is 6.5% in our sample). Then the
continuous time counterpart follows from

ŵ [1 + gw] = ŵeg12=n:

The left hand side gives the wage after on year with an annual growth rate of gw: When one
unit of time in the continuous time model is n months and a year has 12 months, the right
hand side yields the continuous time growth rate g as

n

12
ln [1 + gw] = g: (D.7)

If we go the other way round, we get

gw = eg12=n � 1:

A - 11



� Arrival rates
Imagine we observe average durations in unemployment and in employment and we want

to model durations by Poisson processes. Then the expected number of jumps over an interval
of length n (say months) is given by �n where � is the arrival rate of the Poisson process. If we
�x one unit of time to n; the expected number of jumps per time interval is �: The expected
duration in a state is then given by ��1 units of time. If we observe an average duration of dm
months in the data, we can use

dm =
n

�
: (D.8)

D.1.2 Parameter values

We describe here how parameters are chosen or estimated.

� The interest rate
We �x the interest rate r such that it corresponds to an annual interest rate of 4%. We

translate this into a continuous time interest rate r by er12=n = 1:04, where n is the number of
months one unit of time in continuous time stands for. This yields r = n

12
ln 1:04 = 0:0033n:

With a lower interest rate of 3%; we would end up at r = 0:0025n and would obtain an in�nite
natural borrowing constraint given wage growth (see below) of g = 0:0027n:

� Income w and b
The survey includes income from salary and wages in the previous year. We use this variable

and adjust for the number of weeks worked in that speci�c year to compute annual income. As
one unit of time in the model equals one year, we set w equal to the annual income.
The value of b cannot be determined from the NLSY because we lack information for later

years. We therefore employ a replacement rate as discussed in the main text (see footnote 35).

� The wage growth rate g
The wage in the model grows as described before (3), i.e. w (� (t)) = ŵ�0e

gt. We equate
ŵ�0 to the mean wage of 1986, w86 (expressed in 2008 US$). The mean wage of 2008, w08,
then allows us to determine g by solving w

�
�
�
264
n

��
= w86e

g 264
n = w08: (Our observation period

are 264 months, i.e. 22 years). This yields g = ln
�
w08
w86

�
n
264

and, given the data, we obtain
g = 0:0027n:

� Job-arrival and separation rates, � and s
The arrival rates are linked to the duration in each state via (D.8), i.e. de = n

s
and du = n

�
.

To determine an approximate value for the mean duration in employment and unemployment,
we use the �rst cross-section and look at the weekly employment history of those individuals.
We discard unemployment spells of less than 2 weeks as this is likely to be connected with
job-to-job-transitions. With n = 12 months, we obtain the durations in table 1.

� The natural borrowing limit
Data provides us with some minimum wealth level amindata: By equating a

min
data with the natural

borrowing limit (A.1), we obtain

amindata = �
(1� �) b (t)

r � g
, 1� � = � (r � g)

amindata

b (t)
:

This provides us with an estimate of how much consumption is needed for survival. Plausibility
requires 0 < � < 1: Practically speaking, we choose a value ânat (t) for the detrended model,
i.e. for 1986 from which we start, and solve for optimal consumption and the wealth distribution
for the range provided in (21).
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D.2 Targeting wealth distributions and measuring the �t

D.2.1 The minimization problem for hitting wealth distributions

� One target year

Imagine we target 2008 and we need weights for the di¤erent interest rate paths. We obtain
them by numerically solving the minimization problem

min
fpjg

[1� F (t)] (D.9)

subject to pj � 08j and �nj=1pj = 1:

The optimal number n of �nancial types is obtained by computing the �t for n 2 f2; :::; 130g
and by picking the maximum.

� Many target years

Now imagine we want to maximize the �t over years 1 to T: Then the minimization problem
reads minfpjg�

T
t=1 [1� F (t)] subject to the same constraints as in (D.9). The optimal number

of �nancial types is chosen as before.

D.2.2 The density for wealth a

Following e.g. Wackerly (2008, ch. 6.4) or Wälde (2012, theorem 7.3.2), we have a random
variable x (t) = â (t) with a density f (x (t)) = p (â; t) on a range [â1 (t) ; â2 (t)] and a transfor-
mation of it which is y (t) = y (x (t)) where y (t) = a (t) and y (x (t)) = â (t) � (t) : The density
g (y) = g (a (t)) is then given by f (x (y)) dx

dy
on the range [y (â1 (t)) ; y (â2 (t))] function.

As x (y) = a (t) =� (t) ; we have dx=dy = dâ (t) =da (t) = 1=� (t) : This means

g (a (t)) = f (x (y (t)))
dx (t)

dy (t)
= p

�
a (t)

� (t)
; t

�
1

� (t)
:

The support of a (t) is [â1 (t) � (t) ; â2 (t) � (t)] :

D.2.3 The quantitative support of wealth

The support of wealth for computing the evolution of distributions over time is stationary.
Once we add the trend, the support is as illustrated in �g. 10.
We take the data and numerically construct a density from the empirical histogram. As the

density has a much larger support than what is actually in the data, we cut 0.01% below (no
adjustment is needed above). The cyan line in this �gure shows the minimum and maximum of
the support of the constructed density. After truncating below, we obtain the blue line at the
lower end. (As we do not cut above, the blue and cyan lines coincide.) The red curve shows the
minimum and maximum of wealth levels in the original survey. Finally, the black curve shows
the model support of wealth when targeting 2008 density. Note that while the cyan, blue, and
red curves do not change, the black curve does change according to di¤erent targeted years.
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Figure 10 Supports of wealth when 2008 density is targeted

1986 1987 1988 1989 1990 1992 1994 1996 1998 2000 2004 2008
min -16.3 -16.9 -17.4 -18.0 -18.6 -19.9 -21.3 -22.8 -24.3 -26.0 -29.7 -34.0
max 1,020 1,052 1,088 1,125 1,163 1,244 1,330 1,421 1,520 1,625 1,857 2,123

Table 5 Minimum and maximum wealth levels (in 1000 US$) in the data

D.2.4 The �t over 12 waves for di¤erent targets

We show densities for all 12 waves with wealth information for the case where we target one
density (2008) and where we target the average �t over all years.
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Figure 11 Fit for targeting 2008 (left part) and for targeting the average (right part)

The left �gure shows the densities for all years when 2008 is targeted. The right �gure
shows the same for targeting the average �t over all years. The empirical densities are in black
while the model densities are in blue.
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D.3 Robustness checks

D.3.1 Pure capital income risk with a two-point interest rate distribution

The analysis of pure capital income risk is simpler as individuals that are myopic with respect
to interest rate changes and that do not face labour income uncertainty behave as if they lived
in a deterministic world. This section therefore �rst describes the analytical approach and then
goes to results.

� The analytical approach

As always, we employ t for the current or initial point in time and � for a future point in time.
We solve an optimal consumption problem with an intertemporal objective function as in (5)
in the main text. For analytical convenience, the instantaneous utility function (6) is replaced
by a Stone-Geary representation that takes the minimum consumption level (7) explicitly into

account, i.e. u (c (t)) =
��
c(t)� cmin (t)

�1�� � 1� = (1� �) : Optimal consumption is then given
by

c (�) =
�� (1� �) r

�

�
a (�) +

(1� �) ~w (�)

r � g

�
+ � ~w (�)

where ~w (�) is the wage from (28). Wealth therefore evolves according to

a(�) =

�
a(t) +

(1� �) ~w (t)

r � g

�
e[��t] � (1� �) ~w (t)

r � g
eg[��t]: (D.10)

Hence, wealth a (�) at some future point � in time is monotonic in a (t) in t:
Turning to the distribution of wealth in the future, the probabilities are linked again (see

(25) or app. D.2.2) via G (a (�)) = P (a (t)) ; where G (:) is the distribution function of a (�)
and P (a (t)) is the distribution function for a (t) : Densities are therefore linked by

g (a (�)) =
d

da (�)
P (a (t)) = p (a (t))

da (t)

da (�)
:

Computing

a (t) =

�
a (�) +

(1� �) ~w (t)

r � g
eg[��t]

�
e�

r��
�
[��t] � (1� �) ~w (t)

r � g

shows that
da (t)

da (�)
= e�

r��
�
[��t]:

The density g (a (�)) of wealth at � is therefore described by

g (a (�)) = p (a (t)) e�
r��
�
[��t]

= p

��
a (�) +

(1� �) ~w (t)

r � g
eg[��t]

�
e�

r��
�
[��t] � (1� �) ~w (t)

r � g

�
e�

r��
�
[��t]: (D.11)

� The steps in detail

(i) We start with the ex-ante-only-heterogeneity step. Starting from one initial density for
wealth, p (â; t), obtained from (22), we solve for two densities g (a (�)) from (D.11), one for rlow

and for rhigh: The wage is given by ~w (t) as de�ned in (28).54 We pin down p0 by maximizing the

54We could also solve for 4 densities from 2 interest rates times two labour income levels, w and b: As we are
interested in pure capital income risk, we merge w and b to its mean. Otherwise we would allow for ex-ante
heterogeneity in labour income and we would not be able to talk about pure capital income risk.
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�t of a mixture of the two densities in �g. 6. In terms of (27), we maximize F (t) by choosing p0
in gmodel (a; t) = p0glow (a; t) + (1� p0) ghigh (a; t) : The �t is 64:7% only. The density is visible
in �g. 12 below.
(ii) We now add ex-post heterogeneity. We compute densities from (D.11) for two interest

rate paths. The paths start with the initial interest rate and switch to the other interest rate
after 132 months (i.e. the half of 22 years). This gives an ex-ante-ex-post heterogeneity �t
of 62:0%:55 It falls compared to the ex-ante speci�cation as ex-post uncertainty makes the
resulting densities more equal. This is visible in �g. 12 below.
(iii) This step adds �nancial types: We solve (D.11) with the same interest rate paths used in

the baseline model. This works as follows: (a) Starting again from the initial wealth distribution
p (â; t) and given one interest rate path, we solve for g (a (�)) from (D.11) employing the initial
interest rate, at the T where the interest rate jumps on this interest rate path. This gives
p(â; T ): We then take this density and solve, employing the interest rate after the jump, for
the remaining length of time (22 � T ), where the total number of years is 22; to get the �nal
p(â; 22): This yields one out of the 2n densities illustrated in �g. 5. (b) We repeat this for all
paths. (c) We then choose the shares pj optimally. (The number of types n is held constant.)
We obtain a �t of 65:9%. The di¤erence between the overall �t and this �t provides the

contribution of idiosyncratic risk in labour income.

� The �ndings
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Figure 12 The density of wealth for pure capital income risk (at invariant labour income ~w):
ex-ante heterogeneity (left) and ex-ante and ex-post heterogeneity with two interest rate paths
(right)

It seems surprising that the interest rate hardly has any impact on the density of wealth as
visible in the left part of �g. 12. To check the plausibility of this �nding, compute the ratio of
wealth for two di¤erent interest rates based on (D.10). This ratio is

a(�; rhigh)

a(�; rlow)
=

�
a(t) + (1��) ~w(t)

rhigh�g

�
e
rhigh��

�
[��t] � (1��) ~w(t)

rhigh�g e
g[��t]�

a(t) + (1��) ~w(t)
rlow�g

�
e
rlow��

�
[��t] � (1��) ~w(t)

rlow�g eg[��t]:
: (D.12)

For � � t = 22 years and a (t) = 26; 151 US$ (which is mean wealth in 1986), we get
a(�; rhigh)=a(�; rlow) = 1:43: If we had a �xed initial wealth level, then the di¤erence would
be 43% after 22 years. This is roughly the value we get from looking at the left top �gure in
�g. 12.

55This �t depends of course on which speci�c �nancial type we look at. We chose the �representative��nancial
type, i.e. whose arrival rate is in the middle of all arrival rates we employ for the full quantitative solution.
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When we look at z = b and z = w (and not z = ~w), we �nd the following.
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Figure 13 The e¤ect of labour income on the density of wealth

Here as well, just as with di¤erent interest rates in the ex-ante case, the e¤ect of the level
of labour income with all three channels of pure capital income risk seems to be negligible.
When we do a similar plausibility check as in (D.12) based on (D.10), we get

a(�; w)

a(�; b)
=

�
a(t) + (1��)w(t)

r�g

�
e[��t] � (1��)w(t)

r�g eg[��t]�
a(t) + (1��)b(t)

r�g

�
e[��t] � (1��)b(t)

r�g eg[��t]:
=

�
1:002
0:904

�
for r =

�
4:5%
3:5%

(D.13)

for the same parameter values as used above. The changes are therefore very small such that
they are basically not visible in �g. 13.

D.3.2 Baseline model without type heterogeneity

The importance of types is limited in these analyses with a small increase in the �t when we go
from pure capital income risk (ex-ante, ex-post) to pure capital income risk with types (ex-ante,
ex-post and types). What is the e¤ect of removing types (i.e. having one type only) in the
baseline model (where labour income risk is present as well)? The result is visible in �g. 14.
The �t for the baseline model with ex-ante and ex-post capital risk (but only one �nancial

type) is in the best of all cases (where we pick the type that yields the highest �t) given by
F (2008) = 67:8%: The corresponding densities are shown in �g. 14. The worst �t with one
type is 8:5%: The highest-�t type experiences 5.7 years in the high-interest-rate regime and
16.3 years in the low regime.
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Figure 14 The density of wealth for two interest rate paths, i.e. one �nancial type

D.3.3 Pure capital income risk for a �exible interest rate distribution

We now ask how the �t changes when we generalize our two-point interest rate distribution.
We now let the interest rates range from 4% to 15% with many realizations between 4% and
15%. We study two cases: ex-ante heterogeneity only and all three sources of capital income
risk (ex-ante, ex-post and types).

� Ex-ante heterogeneity only

When we only allow for ex-ante heterogeneity, we �x n interest rates between 4% and 15%:
We compute one partial density per interest rate according to (D.11). We then choose weights
pi such that the �t is maximized. This gives a certain �t. We then choose n such that the �t
is maximized. The result is in the next �gure.
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Figure 15 The �t for ex-ante heterogeneity in constant interest rates

The optimal number of paths is 69 (out of 200), and the �t is 89.8%. The link between n
and the �t is shown in the next �gure.
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Figure 16 The �t F (t) as a function of the number of paths

� Three sources of risk

When we allow for all sources of pure capital income risk (ex ante, ex post, types), we take
the n interest rate paths from the baseline model. We compute a �rst density for the end of
the �rst subperiod of one path according to (D.11). The resulting density is the initial density
for the second subperiod. By doing so, we end up with n densities after 22 years. We compute
optimal weights pj:We can eventually match the 2008 density by 96.7% as shown in �g. 17. It
seems that labour income uncertainty is not required.
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Figure 17 The optimal �t with pure capital risk - do we need labour income risk at all?

D.3.4 High interest rate rhigh = 8%

We report here the �ndings of our robustness check.
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Figure 18 The e¤ect on wealth distributions by �nancial types for low and high initial interest
rates (rhigh = 4:5% in left �gure and rhigh = 8% in right �gure)

The �gure shows the densities for the interest rate paths after 22 years (as in �g. 5 in the
main text). The higher interest rate clearly implies that densities move further to the right.

D.3.5 Varying risk aversion

How does the �t look like when � = 0:8 or � = 1:2?
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Figure 19 Partial densities and overall �t for � = 0:8
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Figure 20 Partial densities and overall �t for � = 1:2 (Note that there is no exploding regime
for this value of � = 1:2)

When we look at the corresponding quantitative phase diagrams �in analogy to �g. 4 in
the main text �we can easily understand the e¤ect of risk aversion.
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Figure 21 Consumption paths for � = 0:8 (left) and � = 1:2 (right)

For a low � of 0:8; we have a standard regime and an exploding regime. The latter has
too low consumption levels, however, such that wealth densities move to the right too quickly.
As a consequence, individuals are �too rich�and the combined model density in �g. 19 is too
far to the right. By contrast, for � = 1:2; there is no exploding regime visible in the right
quantitative phase diagram of �g. 21. As a consequence, all wealth densities in �g. 20 are
concentrated around a�w and the combined model density hardly has any probability mass in
the right tail.

D.3.6 Wealth percentiles

We present wealth shares in the data, !datapercentile, t; and model, !
model
percentile, t; for selected percentiles

of the population. Note that these wealth shares are not targeted but are the result of targeting
either the wealth density in 2008 or the average over densities in all years.
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� Findings for target year 2008

percentile 10 20 30 40 50 60 70 80 90 95 99

data �0:3 0:3 1:9 4:7 8:9 14:9 22:9 34:1 50:8 64:9 89:7
model �0:6 0:1 2:1 5:6 11:1 18:8 29:2 43:3 63:2 78:0 94:1

Table 6 Wealth shares (in %) for 2008 in the data and model when targeting the density in
year 2008

The average of the deviations for the wealth share in 2008,

�2008 � �99percentile=1
�
!datapercentile, 2008 � !modelpercentile, 2008

�
=99; (D.14)

is �4:0%. The average for wealth share �t over all waves,

�all waves � �12waves=1�99percentile=1
�
!datapercentile, t � !modelpercentile, t

�
=99=12; (D.15)

is �7:6%.

� Findings when targeting all years

percentile 10 20 30 40 50 60 70 80 90 95 99

data �0:3 0:3 1:9 4:7 8:9 14:9 22:9 34:1 50:8 64:9 89:7
model �0:4 0:2 1:8 5:4 11:5 20:3 32:6 49:1 70:4 83:2 95:4

Table 7 Wealth shares (in %) for 2008 in the data and model when targeting all years

When targeting all years, the average of the wealth share �t for 2008 from (D.14) is �5:7%.
The average of the wealth share �t over all waves from (D.15) is �2:6%.

D.3.7 Is �nancial ability time-invariant?

The �gures show in more detail why up to 1998 average time spent in the high regime is higher
than up to 2008.
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Figure 22 The share pi of �nancial types i (horizontal axis) in the upper �gure and the share
of time that the corresponding types i are in the high-interest rate regime in the lower �gure

The text reports share1998 � �26j=1p1998j sharej and a corresponding share2008 for 2008.
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D.4 The distribution of idiosyncratic interest rates

The mean � and variance �2 for a discrete random variable X are by de�nition given by
� = �ni=1�ixi and �

2 = �ni=1�i [xi � �]2 : Hence, the numerical mean and standard deviation in
month m for one �nancial type are computed as

�̂r;m = �̂mrhigh + (1� �̂m) rlow; m = 1:::264; (D.16)

�̂r;m =

q
�̂m [rhigh � �r;m]

2 + (1� �̂m) [rlow � �r;m]
2

where �̂m in the code is computed as �̂m = �2nj=1pjIj;m and Ij;m = 1 when path j in month
m has a high return and 0 otherwise. We thereby obtain 264 means and standard deviations.
The last moments corresponding to the target year (i.e. December) are reported. For example,
when 2008 is targeted, the last elements of the vector and their mean are reported.

E Numerical implementation

E.1 The evolution of densities of wealth and interest rate jumps

As individuals are myopic with respect to interest rate changes (see footnote 23), we have
�only�a two-dimensional FPE system in (23). We describe here how changes in the interest
rate are implemented numerically.

� The implementation of interest rate jumps

We assume that the individual stays in the low-interest-rate regime and randomly jumps to
the high-interest-rate regime. If the individual stays 24 months in the low-interest-rate regime,
then they spend 240 (= 264 � 24) months in the high-interest-rate regime. The possible
durations that an individual can stay in an interest rate regime are from 2 months to 262
months.
In principle, jumps in interest rates follow �nancial types. In order to facilitate the numer-

ical implementation, we translate duration rates (e.g. 1/240) into expected duration (e.g. 240
months). The link between the arrival rates as described after (2) is implemented by

�high =
1

264� 1=�low :

We then solve for the distribution of wealth after the initial random duration in the low-
interest-rate regime, then for the random duration in the high-interest-rate regime. Then, 22
years are over.
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� Combining densities

Figure 23 The evolution of the density of wealth when the interest rate jumps once

The left �gure shows an individual starting with a high interest rate. The interest rate
drops at 2000 to the low level. In the right �gure, the individual starts with a low interest rate
and the interest rate jumps upwards in 1994.

E.2 Solving Fokker-Planck equations by the method of characteris-
tics

The Fokker-Planck equations (FPEs) associated with our individual�s maximization problem
read

@

@t
pŵ (â; t) +

�
(r � g) â+ ŵ � ĉŵ (â)

� @
@â
pŵ (â; t) =

�
dcŵ (â)

dâ
� (r � g)� s

�
pŵ (â; t) + �pb̂ (â; t) ;

(E.1)

@

@t
pb̂ (â; t) +

h
(r � g) â+ b̂� ĉb̂ (â)

i @

@â
pb̂ (â; t) = spŵ (â; t) +

"
dcb̂ (â)

dâ
� (r � g)� �

#
pb̂ (â; t) :

(E.2)

We solve these FPEs using the method of characteristics building on earlier work by Nagel
(2013, ch. 5). Solving a FPE involves locating a curve along which the solution for the densities
follows an ordinary di¤erential equation (ODE). Such a curve is called �characteristic curve�
or simply a �characteristic�. These ODEs can be solved on a rectangle [ânat; âmax]� [0; T ] using
the empirically given initial conditions pŵ (â; 0) and pb̂ (â; 0) and boundary conditions. The
latter are given, in our case, by pŵ (ânat; t) = 0 and by pb̂ (âmax; t) = 0.56

56Such a PDE system with initial and boundary conditions is called �initial-boundary value problem�. See
Strikwerda (2004) for a general background on PDEs, on understanding whether such systems are well-posed
and especially on �nite di¤erence schemes for numerically solving PDEs.
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A detailed discussion of the method of characteristics in the context of partial di¤erential
equations can be found in Mattheij et al. (2005, ch. 2.2). The characteristic equations associated
with the FPEs above are given by (see Nagel, 2013, ch. 5)

dâ

dt
= (r � g)â+ ŵ � ĉŵ (â) ; (E.3)

dâ

dt
= (r � g) â+ b̂� ĉb̂ (â) ; (E.4)

dpŵ (â; t)

dt
=

�
dcŵ (â)

dâ
� (r � g)� s

�
pŵ (â; t) + �pb̂ (â; t) ; (E.5)

dpb̂ (â; t)

dt
=

"
dcb̂ (â)

dâ
� (r � g)� �

#
pb̂ (â; t) + spŵ (â; t) : (E.6)

The solutions to pŵ (â; t) and pb̂ (â; t) obtained from (E.5) and (E.6) hold along the char-
acteristic curves (E.3) and (E.4), respectively. Detailed discussion on the numerical method
solving these characteristic equations can also be found in Nagel (2013, ch. 5).
An issue with modelling densities and their numerical solution is the question of mass points.

In fact, our dynamic system (â; ẑ) from (11) and (12) could imply a masspoint at the lower
bound ânat of wealth if consumption ĉb̂r (â (t)) of the unemployed reaches â

nat in �nite time. We
do not model mass points explicitly as empirical densities tend to be smooth and as we found
them negligible from a quantitative perspective in our calibrations.57 Mass points would not
result for an endogenous exit rate from unemployment (as in Lise, 2013) where getting closer
to ânat increases the exit rate (which goes to in�nity as wealth approaches ânat).

57See Birkner and Wälde (2014) for FPE systems that include additional ODEs that describe mass points.
See Achdou et al (2017) for a discussion of mass points in a continuous time Bewley-Huggett-Aiyagari model.
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